Farhad Rikhtegar, E. Kolokotroni, G. Stamatakos, P. Büchler
{"title":"A model of tumor growth coupling a cellular biomodel with biomechanical simulations","authors":"Farhad Rikhtegar, E. Kolokotroni, G. Stamatakos, P. Büchler","doi":"10.1109/IARWISOCI.2014.7034638","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present the development of a multi-scale and multiphysics approach to tumor growth. An existing biomodel used for clinical tumor growth and response to treatment has been coupled with a biomechanical model. The macroscopic mechanical model is used to provide directions of least pressure in the tissue, which drives the geometrical evolution of the tumor predicted at the cellular level. The combined model has been applied to the case of brain and lung tumors. Results indicated that the coupled approach provides additional morphological information on the realistic tumor shape when the tumor is located in regions of tissue inhomogeneity. The approach might be used in oncosimulators for tumor types where the morphometry information plays a major role in the treatment and surgical planning.","PeriodicalId":93358,"journal":{"name":"Proceedings of the 2014 6th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation : the CHIC Project Workshop (IARWISOCI) : Athens, Greece, 3-4 November 2014. International Advanced Research Workshop on...","volume":"116 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 6th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation : the CHIC Project Workshop (IARWISOCI) : Athens, Greece, 3-4 November 2014. International Advanced Research Workshop on...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IARWISOCI.2014.7034638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The aim of this paper is to present the development of a multi-scale and multiphysics approach to tumor growth. An existing biomodel used for clinical tumor growth and response to treatment has been coupled with a biomechanical model. The macroscopic mechanical model is used to provide directions of least pressure in the tissue, which drives the geometrical evolution of the tumor predicted at the cellular level. The combined model has been applied to the case of brain and lung tumors. Results indicated that the coupled approach provides additional morphological information on the realistic tumor shape when the tumor is located in regions of tissue inhomogeneity. The approach might be used in oncosimulators for tumor types where the morphometry information plays a major role in the treatment and surgical planning.