Laser synthesis of silicon carbide powders from silane and hydrocarbon mixtures

M. Cauchetier, O. Croix, M. Luce
{"title":"Laser synthesis of silicon carbide powders from silane and hydrocarbon mixtures","authors":"M. Cauchetier, O. Croix, M. Luce","doi":"10.1111/J.1551-2916.1988.TB00276.X","DOIUrl":null,"url":null,"abstract":"Ultrafine silicon carbide powders have been synthesized from mixtures of silane and hydrocarbons (with one to four carbon atoms) irradiated with an unfocused, high-power (1 kW), continuous-wave industrial CO{sub 2} laser. The chemistry of the reaction has been determined by analysis of the gaseous phase, either by infrared spectroscopy or by combined-gas chromatography-mass spectrometry; reaction yields have been determined. A silicon carbide production rate of 30 g/h with a yield > 99% was obtained from silane and acetylene mixtures with a 600-W laser power. An attempt to approach a production rate of 100 g/h at laboratory scale has been successful. Powder characteristics, such as particle size (10 to 50 nm), crystallinity, and stoichiometry can be controlled through optimization of laser intensity, gas pressure, and flow rate. The powders consist of equiaxed particles which exhibit a narrow size distribution.","PeriodicalId":7260,"journal":{"name":"Advanced Ceramic Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1988-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Ceramic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1551-2916.1988.TB00276.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Ultrafine silicon carbide powders have been synthesized from mixtures of silane and hydrocarbons (with one to four carbon atoms) irradiated with an unfocused, high-power (1 kW), continuous-wave industrial CO{sub 2} laser. The chemistry of the reaction has been determined by analysis of the gaseous phase, either by infrared spectroscopy or by combined-gas chromatography-mass spectrometry; reaction yields have been determined. A silicon carbide production rate of 30 g/h with a yield > 99% was obtained from silane and acetylene mixtures with a 600-W laser power. An attempt to approach a production rate of 100 g/h at laboratory scale has been successful. Powder characteristics, such as particle size (10 to 50 nm), crystallinity, and stoichiometry can be controlled through optimization of laser intensity, gas pressure, and flow rate. The powders consist of equiaxed particles which exhibit a narrow size distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由硅烷和碳氢化合物混合物激光合成碳化硅粉末
超细碳化硅粉末是由硅烷和碳氢化合物(含1到4个碳原子)的混合物合成的,用无聚焦、高功率(1千瓦)、连续波工业CO{sub 2}激光器照射。反应的化学性质是通过气相分析确定的,要么用红外光谱分析,要么用联合气相色谱-质谱分析;测定了反应产率。在600 w激光功率下,硅烷和乙炔混合物的碳化硅产率可达30 g/h,产率> 99%。在实验室规模上,接近100克/小时的生产速度的尝试已经成功。粉末特性,如粒度(10 ~ 50 nm)、结晶度和化学计量学可以通过优化激光强度、气体压力和流量来控制。粉末由等轴颗粒组成,其粒度分布较窄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges in Rietveld Refinement and Structure Visualization in Ceramics Ferroelectric Glass-Ceramic Systems for Energy Storage Applications New Bismuth Sodium Titanate Based Ceramics and Their Applications Ceramic Materials: Science and Engineering Silicon Nitride Fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1