{"title":"Double-Vector Model Predictive Control for Lower Harmonics with Common-Mode Voltage Elimination in Five-Level ANPC Converter","authors":"Chang Liu, Xiaoyan Li, Xiangyang Xing, Ying Jiang, Rui Zhang, Chenghui Zhang","doi":"10.1109/APEC42165.2021.9487278","DOIUrl":null,"url":null,"abstract":"A novel double vector model predictive control (DC-MPC) for lower harmonics with common-mode voltage (CMV) elimination in five-level active neutral-point-clamped (5L-ANPC) converter without weighting factors is proposed in this paper. Firstly, by analyzing all the possible voltage vectors of 5L-ANPC, 19 of the 125 voltage vectors which generate zero CMV are selected as the candidate voltage vectors for the proposed MPC. Then, two optimal voltage vectors of the candidate voltage vectors are selected and its optimal intervals are calculated to reduce the current ripple. In addition, appropriate switching combinations of double selected voltage vectors to balance flying and dc-link capacitor voltages effectively without weighting factors. Finally, the effectiveness of the proposed MPC strategy are verified with simulated results.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"108 1","pages":"2601-2606"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel double vector model predictive control (DC-MPC) for lower harmonics with common-mode voltage (CMV) elimination in five-level active neutral-point-clamped (5L-ANPC) converter without weighting factors is proposed in this paper. Firstly, by analyzing all the possible voltage vectors of 5L-ANPC, 19 of the 125 voltage vectors which generate zero CMV are selected as the candidate voltage vectors for the proposed MPC. Then, two optimal voltage vectors of the candidate voltage vectors are selected and its optimal intervals are calculated to reduce the current ripple. In addition, appropriate switching combinations of double selected voltage vectors to balance flying and dc-link capacitor voltages effectively without weighting factors. Finally, the effectiveness of the proposed MPC strategy are verified with simulated results.