Anna Wachowicz, Jakub Pytlik, Bożena Małysiak-Mrozek, Krzysztof Tokarz, Dariusz Mrozek
{"title":"Edge Computing in IoT–Enabled Honeybee Monitoring for the Detection of Varroa Destructor","authors":"Anna Wachowicz, Jakub Pytlik, Bożena Małysiak-Mrozek, Krzysztof Tokarz, Dariusz Mrozek","doi":"10.34768/amcs-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract Among many important functions, bees play a key role in food production. Unfortunately, worldwide bee populations have been decreasing since 2007. One reason for the decrease of adult worker bees is varroosis, a parasitic disease caused by the Varroa destructor (V. destructor) mite. Varroosis can be quickly eliminated from beehives once detected. However, this requires them to be monitored continuously during periods of bee activity to ensure that V. destructor mites are detected before they spread and infest the entire beehive. To this end, the use of Internet of things (IoT) devices can significantly increase detection speed. Comprehensive solutions are required that can cover entire apiaries and prevent the disease from spreading between hives and apiaries. In this paper, we present a solution for global monitoring of apiaries and the detection of V. destructor mites in beehives. Our solution captures and processes video streams from camera-based IoT devices, analyzes those streams using edge computing, and constructs a global collection of cases within the cloud. We have designed an IoT device that monitors bees and detects V. destructor infestation via video stream analysis on a GPU-accelerated Nvidia Jetson Nano. Experimental results show that the detection process can be run in real time while maintaining similar efficacy to alternative approaches.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"12 1","pages":"355 - 369"},"PeriodicalIF":1.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Among many important functions, bees play a key role in food production. Unfortunately, worldwide bee populations have been decreasing since 2007. One reason for the decrease of adult worker bees is varroosis, a parasitic disease caused by the Varroa destructor (V. destructor) mite. Varroosis can be quickly eliminated from beehives once detected. However, this requires them to be monitored continuously during periods of bee activity to ensure that V. destructor mites are detected before they spread and infest the entire beehive. To this end, the use of Internet of things (IoT) devices can significantly increase detection speed. Comprehensive solutions are required that can cover entire apiaries and prevent the disease from spreading between hives and apiaries. In this paper, we present a solution for global monitoring of apiaries and the detection of V. destructor mites in beehives. Our solution captures and processes video streams from camera-based IoT devices, analyzes those streams using edge computing, and constructs a global collection of cases within the cloud. We have designed an IoT device that monitors bees and detects V. destructor infestation via video stream analysis on a GPU-accelerated Nvidia Jetson Nano. Experimental results show that the detection process can be run in real time while maintaining similar efficacy to alternative approaches.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.