Madeleine Pettersson Bergstrand , Olof Beck , Anders Helander
{"title":"Urine analysis of 28 designer benzodiazepines by liquid chromatography–high-resolution mass spectrometry","authors":"Madeleine Pettersson Bergstrand , Olof Beck , Anders Helander","doi":"10.1016/j.clinms.2018.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Hundreds of new psychoactive substances (NPS) covering most drugs-of-abuse classes have been introduced to the recreational drug market in recent years. One class of NPS drugs that has become more common recently is “designer” benzodiazepines. Due to a close structural resemblance with prescription benzodiazepines, some of these substances may elicit a positive response (i.e. cross react) in immunoassay screening. Consequently, it is increasingly important to include NPS benzodiazepines during method confirmation to ensure accurate identification of closely-related compounds as well as detection of the benzodiazepines themselves.</p><p>Here, we present our efforts to develop a screening and confirmation method for detection of 28 NPS benzodiazepines in urine using reversed-phase liquid chromatographic separation in combination with high-resolution mass spectrometry (LC–HRMS). MS was performed in positive electrospray mode on a Thermo Fischer Scientific Q Exactive Orbitrap instrument using either full scan (for screening) or parallel reaction monitoring (for confirmation).</p><p>We found the lower quantification limit of the method to range from 5 to 50 ng/mL. Analytical precision and accuracy were ≤15% for both screening and confirmation for all except one analyte. The method was used to analyze patient urine samples from routine drug testing and samples from acute intoxication cases presenting in emergency wards. Altogether, 16 of the 28 benzodiazepines (i.e., clobazam, clonazolam, deschloroetizolam, diclazepam, estazolam, etizolam, flubromazepam, flubromazolam, flunitrazolam, 3-hydroxyflubromazepam, 3-hydroxyphenazepam, ketazolam, meclonazepam, metizolam, nifoxipam, and pyrazolam) were detected in the urine samples.</p><p>The results from patient sample analysis indicate a high prevalence of NPS benzodiazepine use, emphasizing the importance of including novel drugs of abuse in drug testing menus.</p></div>","PeriodicalId":48565,"journal":{"name":"Clinical Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.clinms.2018.08.004","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Mass Spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2376999818300126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 12
Abstract
Hundreds of new psychoactive substances (NPS) covering most drugs-of-abuse classes have been introduced to the recreational drug market in recent years. One class of NPS drugs that has become more common recently is “designer” benzodiazepines. Due to a close structural resemblance with prescription benzodiazepines, some of these substances may elicit a positive response (i.e. cross react) in immunoassay screening. Consequently, it is increasingly important to include NPS benzodiazepines during method confirmation to ensure accurate identification of closely-related compounds as well as detection of the benzodiazepines themselves.
Here, we present our efforts to develop a screening and confirmation method for detection of 28 NPS benzodiazepines in urine using reversed-phase liquid chromatographic separation in combination with high-resolution mass spectrometry (LC–HRMS). MS was performed in positive electrospray mode on a Thermo Fischer Scientific Q Exactive Orbitrap instrument using either full scan (for screening) or parallel reaction monitoring (for confirmation).
We found the lower quantification limit of the method to range from 5 to 50 ng/mL. Analytical precision and accuracy were ≤15% for both screening and confirmation for all except one analyte. The method was used to analyze patient urine samples from routine drug testing and samples from acute intoxication cases presenting in emergency wards. Altogether, 16 of the 28 benzodiazepines (i.e., clobazam, clonazolam, deschloroetizolam, diclazepam, estazolam, etizolam, flubromazepam, flubromazolam, flunitrazolam, 3-hydroxyflubromazepam, 3-hydroxyphenazepam, ketazolam, meclonazepam, metizolam, nifoxipam, and pyrazolam) were detected in the urine samples.
The results from patient sample analysis indicate a high prevalence of NPS benzodiazepine use, emphasizing the importance of including novel drugs of abuse in drug testing menus.
期刊介绍:
Clinical Mass Spectrometry publishes peer-reviewed articles addressing the application of mass spectrometric technologies in Laboratory Medicine and Clinical Pathology with the focus on diagnostic applications. It is the first journal dedicated specifically to the application of mass spectrometry and related techniques in the context of diagnostic procedures in medicine. The journal has an interdisciplinary approach aiming to link clinical, biochemical and technological issues and results.