On strategies for budget-based online annotation in human activity recognition

Tudor Miu, P. Missier, D. Roggen, T. Plötz
{"title":"On strategies for budget-based online annotation in human activity recognition","authors":"Tudor Miu, P. Missier, D. Roggen, T. Plötz","doi":"10.1145/2638728.2641300","DOIUrl":null,"url":null,"abstract":"Bootstrapping activity recognition systems in ubiquitous and mobile computing scenarios often comes with the challenge of obtaining reliable ground truth annotations. A promising approach to overcome these difficulties involves obtaining online activity annotations directly from users. However, such direct engagement has its limitations as users typically show only limited tolerance for unwanted interruptions such as prompts for annotations. In this paper we explore the effectiveness of approaches to online, user-based annotation of activity data. Our central assumption is the existence of a fixed, limited budget of annotations a user is willing to provide. We evaluate different strategies on how to spend such a budget most effectively. Using the Opportunity benchmark we simulate online annotation scenarios for a variety of budget configurations and we show that effective online annotation can still be achieved using reduced annotation effort.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638728.2641300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Bootstrapping activity recognition systems in ubiquitous and mobile computing scenarios often comes with the challenge of obtaining reliable ground truth annotations. A promising approach to overcome these difficulties involves obtaining online activity annotations directly from users. However, such direct engagement has its limitations as users typically show only limited tolerance for unwanted interruptions such as prompts for annotations. In this paper we explore the effectiveness of approaches to online, user-based annotation of activity data. Our central assumption is the existence of a fixed, limited budget of annotations a user is willing to provide. We evaluate different strategies on how to spend such a budget most effectively. Using the Opportunity benchmark we simulate online annotation scenarios for a variety of budget configurations and we show that effective online annotation can still be achieved using reduced annotation effort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预算的人类活动识别在线标注策略研究
在无处不在和移动计算场景中引导活动识别系统经常面临获得可靠的地面真值注释的挑战。克服这些困难的一个有希望的方法是直接从用户那里获得在线活动注释。然而,这种直接参与有其局限性,因为用户通常对不必要的中断(如注释提示)只有有限的容忍度。在本文中,我们探讨了基于用户的活动数据在线注释方法的有效性。我们的中心假设是存在一个固定的、有限预算的用户愿意提供的注释。我们评估了如何最有效地使用这些预算的不同策略。使用Opportunity基准,我们模拟了各种预算配置的在线注释场景,并证明了通过减少注释工作量仍然可以实现有效的在线注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steered crowdsensing: incentive design towards quality-oriented place-centric crowdsensing Usable consents: tracking and managing use of personal data with a consent transaction receipt The socio-technical superorganism vision A new illness recognition framework using frequent temporal pattern mining Mercury: an application store for open display networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1