Comparison of different wavelet features from EEG signals for classifying human emotions

M. Murugappan, R. Nagarajan, S. Yaacob
{"title":"Comparison of different wavelet features from EEG signals for classifying human emotions","authors":"M. Murugappan, R. Nagarajan, S. Yaacob","doi":"10.1109/ISIEA.2009.5356339","DOIUrl":null,"url":null,"abstract":"In recent years, estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role on developing intellectual Brain Computer Interface (BCI) devices. In this work, we have collected the EEG signals using 64 channels from 20 subjects in the age group of 21~39 years for determining discrete emotions (happy, surprise, fear, disgust, and neutral) under audio-visual induction (video/film clips) stimuli. Surface Laplacian filtering is used to preprocess the EEG signals and decomposed into five different EEG frequency bands (delta, theta, alpha, beta, and gamma) using Wavelet Transform (WT). The statistical features are derived from all these five frequency bands are considered for classifying the emotions using two linear classifiers (K Nearest Neighbor (KNN) & Linear Discriminant Analysis (LDA)). The main objective of this work is to consider a selected number of 24 channels for assessing emotions from the original EEG channels. There are three different wavelet functions (“db8”, “sym8”, and “coif5”) are used to derive the linear and non linear features for emotion classification. The validation of statistical features is performed using 5 fold cross validation. In this work, KNN outperforms LDA by offering a maximum average classification rate of 79.174 %. Finally we present the average and individual classification rate of emotions over various statistical features on three different wavelet functions for justifying the performance of our emotion recognition system.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"65 1","pages":"836-841"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

In recent years, estimation of human emotions from Electroencephalogram (EEG) signals plays a vital role on developing intellectual Brain Computer Interface (BCI) devices. In this work, we have collected the EEG signals using 64 channels from 20 subjects in the age group of 21~39 years for determining discrete emotions (happy, surprise, fear, disgust, and neutral) under audio-visual induction (video/film clips) stimuli. Surface Laplacian filtering is used to preprocess the EEG signals and decomposed into five different EEG frequency bands (delta, theta, alpha, beta, and gamma) using Wavelet Transform (WT). The statistical features are derived from all these five frequency bands are considered for classifying the emotions using two linear classifiers (K Nearest Neighbor (KNN) & Linear Discriminant Analysis (LDA)). The main objective of this work is to consider a selected number of 24 channels for assessing emotions from the original EEG channels. There are three different wavelet functions (“db8”, “sym8”, and “coif5”) are used to derive the linear and non linear features for emotion classification. The validation of statistical features is performed using 5 fold cross validation. In this work, KNN outperforms LDA by offering a maximum average classification rate of 79.174 %. Finally we present the average and individual classification rate of emotions over various statistical features on three different wavelet functions for justifying the performance of our emotion recognition system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电信号不同小波特征对人类情绪分类的比较
近年来,从脑电图(EEG)信号中估计人类情绪在开发智能脑机接口(BCI)设备中起着至关重要的作用。在这项工作中,我们收集了20名年龄在21~39岁的受试者的64个通道的脑电图信号,以确定视听诱导(视频/电影片段)刺激下的离散情绪(快乐、惊讶、恐惧、厌恶和中性)。采用表面拉普拉斯滤波对脑电信号进行预处理,并利用小波变换(Wavelet Transform, WT)将脑电信号分解为5个不同的频段(delta、theta、alpha、beta和gamma)。从所有这五个频带中得出的统计特征被考虑用于使用两个线性分类器(K最近邻(KNN)和线性判别分析(LDA))对情绪进行分类。这项工作的主要目的是考虑从原始EEG通道中选择24个通道来评估情绪。有三个不同的小波函数(“db8”,“sym8”和“coif5”)用于导出用于情感分类的线性和非线性特征。统计特征的验证使用5倍交叉验证进行。在这项工作中,KNN的最大平均分类率为79.174%,优于LDA。最后,我们在三种不同的小波函数上给出了情绪在各种统计特征上的平均分类率和个体分类率,以证明我们的情绪识别系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm optimization of I/O scales and parameters for FLIC in servomotor control Application and evaluation of high power Zigbee based wireless sensor network in water irrigation control monitoring system Efficiency performance analysis of Series Loaded Resonant converter Parallel distributed compensation based robust fuzzy control A new Shifted Scaled LS channel estimator for Rician flat fading MIMO channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1