Electromagnetic heating using nanomaterials and various potentials applications

N. Phuc, Do Hung Manh, Pham Hong Nam
{"title":"Electromagnetic heating using nanomaterials and various potentials applications","authors":"N. Phuc, Do Hung Manh, Pham Hong Nam","doi":"10.15625/2525-2518/18032","DOIUrl":null,"url":null,"abstract":"Electromagnetic heating (EMH) is a process of adsorbing electromagnetic wave energy by a material and converting it into heat. Nanomaterials can serve as novel susceptors in EMH due to the fine size that made them become heat sources from inside, as well as because of new heating mechanisms such as Neel relaxation by magnetic nanoparticles (MNPs) and localized surface plasmon resonance by metallic nanostructures. This review firstly introduces general theoretical & experimental aspects of the alternating electric field (AEF)- and magnetic field (AMF)-stimulated heating. Next, attempts to fabricate MNPs and photothermal nanoparticles (PNPs) of improved heating efficiencies have been reviewed and those with the highest specific loss power have been summarized. Finally, potential applications, including cancer treatment using AMF@MNP hyperthermia and AEF@PNP hyperthermia, AMF@MNP- and AEF@PNP- triggered drug release, as well as nanocomposite processing were particularly highlighted. Besides, other exotic applications such as toxic solvent desorption from adsorbent materials, thermophoresis in precise membrane melting as well as optical signal processing in heat-assisted magnetic memory technology were also outlined. The various applications were attempted to represent into 2 groups: biomedicine, and materials processing; which are composed of localized/targeted and volumetric heating type.","PeriodicalId":23553,"journal":{"name":"Vietnam Journal of Science and Technology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2525-2518/18032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic heating (EMH) is a process of adsorbing electromagnetic wave energy by a material and converting it into heat. Nanomaterials can serve as novel susceptors in EMH due to the fine size that made them become heat sources from inside, as well as because of new heating mechanisms such as Neel relaxation by magnetic nanoparticles (MNPs) and localized surface plasmon resonance by metallic nanostructures. This review firstly introduces general theoretical & experimental aspects of the alternating electric field (AEF)- and magnetic field (AMF)-stimulated heating. Next, attempts to fabricate MNPs and photothermal nanoparticles (PNPs) of improved heating efficiencies have been reviewed and those with the highest specific loss power have been summarized. Finally, potential applications, including cancer treatment using AMF@MNP hyperthermia and AEF@PNP hyperthermia, AMF@MNP- and AEF@PNP- triggered drug release, as well as nanocomposite processing were particularly highlighted. Besides, other exotic applications such as toxic solvent desorption from adsorbent materials, thermophoresis in precise membrane melting as well as optical signal processing in heat-assisted magnetic memory technology were also outlined. The various applications were attempted to represent into 2 groups: biomedicine, and materials processing; which are composed of localized/targeted and volumetric heating type.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电磁加热利用纳米材料和各种潜在的应用
电磁加热(EMH)是材料吸附电磁波能量并将其转化为热能的过程。纳米材料可以作为EMH的新型感受器,因为它们的细尺寸使它们从内部成为热源,以及由于新的加热机制,如磁性纳米颗粒(MNPs)的尼尔弛豫和金属纳米结构的局部表面等离子体共振。本文首先介绍了交变电场(AEF)和磁场(AMF)激发加热的一般理论和实验方面。接下来,综述了制备具有更高加热效率的MNPs和光热纳米颗粒(PNPs)的尝试,并总结了具有最高比损耗功率的纳米颗粒。最后,特别强调了潜在的应用,包括使用AMF@MNP和AEF@PNP热疗治疗癌症,AMF@MNP-和AEF@PNP-触发药物释放,以及纳米复合材料加工。此外,还概述了吸附材料的有毒溶剂解吸、精确膜熔融中的热电泳以及热辅助磁存储技术中的光信号处理等其他新应用。将各种应用分为两组:生物医学和材料加工;它们由局部/定向和体积加热类型组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
comprehensive review of rock dust for soil remineralization in sustainable agriculture and preliminary assessment of nutrient values in micronized porous basalt rock from Nghe-An province, Vietnam Effect of rice husk morphology on the ability to synthesize silicon carbide by pyrolysis method Manufacturing of Al-Zr-Si master alloy from zircon concentrate Synthesis of Polybenzoxazine as an environmentally friendly adhesive material from cardanol and post-consumer PET source Study on solidified material from dredged sediment, fly ash, and blended Portland cement using the response surface method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1