Edwin Olson, Matthew R. Walter, S. Teller, J. Leonard
{"title":"Single-Cluster Spectral Graph Partitioning for Robotics Applications","authors":"Edwin Olson, Matthew R. Walter, S. Teller, J. Leonard","doi":"10.15607/RSS.2005.I.035","DOIUrl":null,"url":null,"abstract":"We present SCGP, an algorithm for finding a single cluster of well-connected nodes in a graph. The general problem is NP-hard, but our algorithm produces an approximate solution in O(N 2 ) time by considering the spectral properties of the graph's adjacency matrix. We show how this algorithm can be used to find sets of self-consistent hypotheses while rejecting incorrect hypotheses, a problem that frequently arises in robotics. We present results from a range-only SLAM system, a polynomial time data association algorithm, and a method for parametric line fitting that can outperform RANSAC.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"49 1","pages":"265-272"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
We present SCGP, an algorithm for finding a single cluster of well-connected nodes in a graph. The general problem is NP-hard, but our algorithm produces an approximate solution in O(N 2 ) time by considering the spectral properties of the graph's adjacency matrix. We show how this algorithm can be used to find sets of self-consistent hypotheses while rejecting incorrect hypotheses, a problem that frequently arises in robotics. We present results from a range-only SLAM system, a polynomial time data association algorithm, and a method for parametric line fitting that can outperform RANSAC.