Mathematical modeling of single action pressing of powder materials under dry friction conditions

S. Karpov, L. S. Stel'makh, A. Stolin
{"title":"Mathematical modeling of single action pressing of powder materials under dry friction conditions","authors":"S. Karpov, L. S. Stel'makh, A. Stolin","doi":"10.17073/1997-308x-2020-4-22-32","DOIUrl":null,"url":null,"abstract":"The paper presents a theoretical analysis of the single action pressing of powder materials featuring plasticity and compressibility. It takes into account dry external friction between the die material and side walls, which determines the strong nonlinearity of the problem considered. This problem has a number of features that complicate its numerical solution: the presence of external friction, the elastic-plastic law of material behavior description, as well as the calculation of large displacements and, as a consequence, strong geometric nonlinearity. To consider these features, a combination of Fleck–Kuhn–McMeeking and Gurson– Tvergaard–Needleman models was used to consider a wide range of changes in the porosity of materials. The numerical solution of the problem was carried out using finite element analysis with isoparametric elements. The increment of plastic deformations at each step was determined from nonlinear equations of plastic flow. Stresses at the Gaussian points were updated according to the specified increments of deformations to calculate the material behavior during deformation. Unknown density and strain values as functions of coordinate and time were calculated. The influence of the different height-to-diameter ratio of the blank and the value of external friction of the material stress-strain state and compaction kinetics were considered. The distribution of equivalent stresses and the value of volumetric plastic deformations in the material, as well as the nonuniformity of relative density at the end of the pressing period were studied. The theoretical analysis made it possible to study the basic compaction kinetics laws for powder materials with nonuniform density under conditions of dry friction on side walls. The results obtained are relevant for predicting possible negative changes in the blank geometry when implementing the single action pressing scheme for powder materials.","PeriodicalId":14693,"journal":{"name":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/1997-308x-2020-4-22-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper presents a theoretical analysis of the single action pressing of powder materials featuring plasticity and compressibility. It takes into account dry external friction between the die material and side walls, which determines the strong nonlinearity of the problem considered. This problem has a number of features that complicate its numerical solution: the presence of external friction, the elastic-plastic law of material behavior description, as well as the calculation of large displacements and, as a consequence, strong geometric nonlinearity. To consider these features, a combination of Fleck–Kuhn–McMeeking and Gurson– Tvergaard–Needleman models was used to consider a wide range of changes in the porosity of materials. The numerical solution of the problem was carried out using finite element analysis with isoparametric elements. The increment of plastic deformations at each step was determined from nonlinear equations of plastic flow. Stresses at the Gaussian points were updated according to the specified increments of deformations to calculate the material behavior during deformation. Unknown density and strain values as functions of coordinate and time were calculated. The influence of the different height-to-diameter ratio of the blank and the value of external friction of the material stress-strain state and compaction kinetics were considered. The distribution of equivalent stresses and the value of volumetric plastic deformations in the material, as well as the nonuniformity of relative density at the end of the pressing period were studied. The theoretical analysis made it possible to study the basic compaction kinetics laws for powder materials with nonuniform density under conditions of dry friction on side walls. The results obtained are relevant for predicting possible negative changes in the blank geometry when implementing the single action pressing scheme for powder materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干摩擦条件下粉末材料单作用压制的数学建模
本文对具有塑性和压缩性的粉末材料的单作用压制进行了理论分析。它考虑了模具材料与侧壁之间的干外摩擦,这决定了所考虑问题的强非线性。这个问题有许多特征,使其数值解复杂化:外部摩擦的存在,材料行为描述的弹塑性规律,以及大位移的计算,因此,强烈的几何非线性。为了考虑这些特征,使用了Fleck-Kuhn-McMeeking和Gurson - Tvergaard-Needleman模型的组合来考虑材料孔隙率的大范围变化。采用等参数单元的有限元分析方法对该问题进行了数值求解。根据塑性流动的非线性方程确定了每一步的塑性变形增量。根据指定的变形增量更新高斯点处的应力,以计算材料在变形过程中的行为。计算未知的密度和应变值作为坐标和时间的函数。考虑了不同坯料高径比和外摩擦值对材料应力-应变状态和压实动力学的影响。研究了材料的等效应力分布和体积塑性变形值,以及挤压期结束时相对密度的不均匀性。理论分析使得研究非均匀密度粉体材料在侧壁干摩擦条件下的基本压实动力学规律成为可能。所得结果与预测粉末材料单动作压制方案时毛坯几何形状可能出现的负变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In memory of Yuri Mikhailovich Maksimov Air-thermal oxidation of diamond nanopowders obtained by the methods of mechanical grinding and detonation synthesis Features of the impact of hot isostatic pressing and heat treatment on the structure and properties of maraging steel obtained by selective laser melting method Features of SHS of multicomponent carbides SHS of highly dispersed powder compositions of nitrides with silicon carbide Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1