label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs

Panagiotis Papastamoulis
{"title":"label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs","authors":"Panagiotis Papastamoulis","doi":"10.18637/jss.v069.c01","DOIUrl":null,"url":null,"abstract":"Label switching is a well-known and fundamental problem in Bayesian estimation of mixture or hidden Markov models. In case that the prior distribution of the model parameters is the same for all states, then both the likelihood and posterior distribution are invariant to permutations of the parameters. This property makes Markov chain Monte Carlo (MCMC) samples simulated from the posterior distribution non-identifiable. In this paper, the \\pkg{label.switching} package is introduced. It contains one probabilistic and seven deterministic relabelling algorithms in order to post-process a given MCMC sample, provided by the user. Each method returns a set of permutations that can be used to reorder the MCMC output. Then, any parametric function of interest can be inferred using the reordered MCMC sample. A set of user-defined permutations is also accepted, allowing the researcher to benchmark new relabelling methods against the available ones","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v069.c01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Label switching is a well-known and fundamental problem in Bayesian estimation of mixture or hidden Markov models. In case that the prior distribution of the model parameters is the same for all states, then both the likelihood and posterior distribution are invariant to permutations of the parameters. This property makes Markov chain Monte Carlo (MCMC) samples simulated from the posterior distribution non-identifiable. In this paper, the \pkg{label.switching} package is introduced. It contains one probabilistic and seven deterministic relabelling algorithms in order to post-process a given MCMC sample, provided by the user. Each method returns a set of permutations that can be used to reorder the MCMC output. Then, any parametric function of interest can be inferred using the reordered MCMC sample. A set of user-defined permutations is also accepted, allowing the researcher to benchmark new relabelling methods against the available ones
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标签。交换:一个处理MCMC输出中标签交换问题的R包
标签切换是混合或隐马尔可夫模型贝叶斯估计中一个众所周知的基本问题。如果模型参数的先验分布对所有状态都相同,则参数的似然分布和后验分布对参数的排列都是不变的。这一性质使得从后验分布模拟的马尔可夫链蒙特卡罗(MCMC)样本不可识别。在本文中,\pkg{标签。介绍了交换}包。它包含一种概率和七种确定性重新标记算法,以便对用户提供的给定MCMC样本进行后处理。每个方法返回一组排列,可用于对MCMC输出进行重新排序。然后,可以使用重新排序的MCMC样本推断出任何感兴趣的参数函数。一组用户定义的排列也被接受,允许研究人员对新的重新标记方法进行基准测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1