Machine-Learning-Guided Selectively Unsound Static Analysis

K. Heo, Hakjoo Oh, K. Yi
{"title":"Machine-Learning-Guided Selectively Unsound Static Analysis","authors":"K. Heo, Hakjoo Oh, K. Yi","doi":"10.1109/ICSE.2017.54","DOIUrl":null,"url":null,"abstract":"We present a machine-learning-based technique for selectively applying unsoundness in static analysis. Existing bug-finding static analyzers are unsound in order to be precise and scalable in practice. However, they are uniformly unsound and hence at the risk of missing a large amount of real bugs. By being sound, we can improve the detectability of the analyzer but it often suffers from a large number of false alarms. Our approach aims to strike a balance between these two approaches by selectively allowing unsoundness only when it is likely to reduce false alarms, while retaining true alarms. We use an anomaly-detection technique to learn such harmless unsoundness. We implemented our technique in two static analyzers for full C. One is for a taint analysis for detecting format-string vulnerabilities, and the other is for an interval analysis for buffer-overflow detection. The experimental results show that our approach significantly improves the recall of the original unsound analysis without sacrificing the precision.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"383 1","pages":"519-529"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

We present a machine-learning-based technique for selectively applying unsoundness in static analysis. Existing bug-finding static analyzers are unsound in order to be precise and scalable in practice. However, they are uniformly unsound and hence at the risk of missing a large amount of real bugs. By being sound, we can improve the detectability of the analyzer but it often suffers from a large number of false alarms. Our approach aims to strike a balance between these two approaches by selectively allowing unsoundness only when it is likely to reduce false alarms, while retaining true alarms. We use an anomaly-detection technique to learn such harmless unsoundness. We implemented our technique in two static analyzers for full C. One is for a taint analysis for detecting format-string vulnerabilities, and the other is for an interval analysis for buffer-overflow detection. The experimental results show that our approach significantly improves the recall of the original unsound analysis without sacrificing the precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习引导的选择性不健全静态分析
我们提出了一种基于机器学习的技术,用于选择性地在静态分析中应用不稳健性。为了在实践中精确和可扩展,现有的bug查找静态分析器是不健全的。然而,它们都是不可靠的,因此有可能遗漏大量真正的bug。通过合理的检测,可以提高分析仪的可检测性,但往往存在大量的误报。我们的方法旨在在这两种方法之间取得平衡,只有在可能减少假警报的情况下才有选择地允许不健全,同时保留真警报。我们使用异常检测技术来学习这种无害的不健全。我们在两个静态分析器中实现了我们的技术。一个是用于检测格式字符串漏洞的污染分析,另一个是用于缓冲区溢出检测的间隔分析。实验结果表明,该方法在不牺牲精度的前提下,显著提高了原始不健全分析的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Unpacking of Android Apps Symbolic Model Extraction for Web Application Verification On Cross-Stack Configuration Errors Syntactic and Semantic Differencing for Combinatorial Models of Test Designs Fuzzy Fine-Grained Code-History Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1