A Context Semantic Auxiliary Network for Image Captioning

Inf. Comput. Pub Date : 2023-07-20 DOI:10.3390/info14070419
Jianying Li, Xiangjun Shao
{"title":"A Context Semantic Auxiliary Network for Image Captioning","authors":"Jianying Li, Xiangjun Shao","doi":"10.3390/info14070419","DOIUrl":null,"url":null,"abstract":"Image captioning is a challenging task, which generates a sentence for a given image. The earlier captioning methods mainly decode the visual features to generate caption sentences for the image. However, the visual features lack the context semantic information which is vital for generating an accurate caption sentence. To address this problem, this paper first proposes the Attention-Aware (AA) mechanism which can filter out erroneous or irrelevant context semantic information. And then, AA is utilized to constitute a Context Semantic Auxiliary Network (CSAN), which can capture the effective context semantic information to regenerate or polish the image caption. Moreover, AA can capture the visual feature information needed to generate a caption. Experimental results show that our proposed CSAN outperforms the compared image captioning methods on MS COCO “Karpathy” offline test split and the official online testing server.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image captioning is a challenging task, which generates a sentence for a given image. The earlier captioning methods mainly decode the visual features to generate caption sentences for the image. However, the visual features lack the context semantic information which is vital for generating an accurate caption sentence. To address this problem, this paper first proposes the Attention-Aware (AA) mechanism which can filter out erroneous or irrelevant context semantic information. And then, AA is utilized to constitute a Context Semantic Auxiliary Network (CSAN), which can capture the effective context semantic information to regenerate or polish the image caption. Moreover, AA can capture the visual feature information needed to generate a caption. Experimental results show that our proposed CSAN outperforms the compared image captioning methods on MS COCO “Karpathy” offline test split and the official online testing server.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于图像标注的上下文语义辅助网络
图像字幕是一项具有挑战性的任务,它为给定的图像生成一个句子。早期的字幕方法主要是对图像的视觉特征进行解码,生成字幕句子。然而,视觉特征缺乏上下文语义信息,而上下文语义信息对于生成准确的标题句至关重要。为了解决这一问题,本文首先提出了注意感知(Attention-Aware, AA)机制,该机制可以过滤掉错误或不相关的上下文语义信息。然后利用AA构成上下文语义辅助网络(Context Semantic Auxiliary Network, CSAN),捕获有效的上下文语义信息,对图像标题进行再生或修饰。此外,AA可以捕获生成标题所需的视觉特征信息。实验结果表明,本文提出的CSAN在MS COCO“Karpathy”离线测试分割和官方在线测试服务器上优于对比图像字幕方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1