{"title":"Double Dirac cones and topologically nontrivial phonons for continuous square symmetric \nC4(v)\n and \nC2(v)\n unit cells","authors":"Yan Lu, Harold S. Park","doi":"10.1103/PHYSREVB.103.064308","DOIUrl":null,"url":null,"abstract":"Because phononic topological insulators have primarily been studied in discrete, graphene-like structures with C$_{6}$ or C$_{3}$ hexagonal symmetry, an open question is how to systematically achieve double Dirac cones and topologically non-trivial structures using continuous, non-hexagonal unit cells. Here, we address this challenge by presenting a novel computational methodology for the inverse design of continuous two-dimensional square phononic metamaterials exhibiting C$_{4v}$ and C$_{2v}$ symmetry. This leads to the systematic design of square unit cell topologies exhibiting a double Dirac degeneracy, which enables topologically-protected interface propagation based on the quantum spin Hall effect (QSHE). Numerical simulations prove that helical edge states emerge at the interface between two topologically distinct square phononic metamaterials, which opens the possibility of QSHE-based pseudospin-dependent transport beyond hexagonal lattices.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.064308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Because phononic topological insulators have primarily been studied in discrete, graphene-like structures with C$_{6}$ or C$_{3}$ hexagonal symmetry, an open question is how to systematically achieve double Dirac cones and topologically non-trivial structures using continuous, non-hexagonal unit cells. Here, we address this challenge by presenting a novel computational methodology for the inverse design of continuous two-dimensional square phononic metamaterials exhibiting C$_{4v}$ and C$_{2v}$ symmetry. This leads to the systematic design of square unit cell topologies exhibiting a double Dirac degeneracy, which enables topologically-protected interface propagation based on the quantum spin Hall effect (QSHE). Numerical simulations prove that helical edge states emerge at the interface between two topologically distinct square phononic metamaterials, which opens the possibility of QSHE-based pseudospin-dependent transport beyond hexagonal lattices.