The New Technological Frontiers of CO2 and Hydrogen Transportation Via Pipelines

Giorgio Arcangeletti, Daniele Scarsciafratte, M. Leporini, Benedetto Orselli, Angelo Santicchia, E. Torselletti, E. Aloigi
{"title":"The New Technological Frontiers of CO2 and Hydrogen Transportation Via Pipelines","authors":"Giorgio Arcangeletti, Daniele Scarsciafratte, M. Leporini, Benedetto Orselli, Angelo Santicchia, E. Torselletti, E. Aloigi","doi":"10.2118/207936-ms","DOIUrl":null,"url":null,"abstract":"\n COVID-19 pandemic is accelerating the transition to decarbonized energy systems. In this context, major Operators and Contractors are bound to promote innovation and technological development. The paper describes how this is being applied to the design of offshore pipelines that are now required to transport not only Hydrocarbons but also anthropogenic CO2 and low-carbon Hydrogen. In order to evaluate all the new technical challenges presented in designing CO2 and H2 pipelines, a state of art has been carried out and is here presented focusing on all the new technical aspects associated to the main disciplines involved in the pipeline network design. Different technical aspects (such as performances evaluation of Equation of State in CCS, Design Standards application to both CO2 and hydrogen pipelines, energy capacity of hydrogen pipelines and others) have been also analytically or numerically addressed simulating credible pipeline operating scenarios. To achieve that, an intensive engineering effort is being dedicated to the development of knowledge, engineering tools, methods and procedures that will be the basis for the execution of future projects concerning H2 and CO2 transportation and storage. A particular focus has been dedicated to offshore pipeline design both for new installation and repurposing of existing ones. In parallel, the cooperation started between Operators, Contractors, Manufacturers, Institutions and Universities, as described in the present paper, acts as a \"booster\" for the consolidation of knowledge and for the advancing of technology to put in place to overcome those new challenges. Recommendations are made in relation to the gaps found in experimental evidence present in literature and gaps in Standards coverage for the proper pipeline design in those new scenarios.","PeriodicalId":10981,"journal":{"name":"Day 4 Thu, November 18, 2021","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207936-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

COVID-19 pandemic is accelerating the transition to decarbonized energy systems. In this context, major Operators and Contractors are bound to promote innovation and technological development. The paper describes how this is being applied to the design of offshore pipelines that are now required to transport not only Hydrocarbons but also anthropogenic CO2 and low-carbon Hydrogen. In order to evaluate all the new technical challenges presented in designing CO2 and H2 pipelines, a state of art has been carried out and is here presented focusing on all the new technical aspects associated to the main disciplines involved in the pipeline network design. Different technical aspects (such as performances evaluation of Equation of State in CCS, Design Standards application to both CO2 and hydrogen pipelines, energy capacity of hydrogen pipelines and others) have been also analytically or numerically addressed simulating credible pipeline operating scenarios. To achieve that, an intensive engineering effort is being dedicated to the development of knowledge, engineering tools, methods and procedures that will be the basis for the execution of future projects concerning H2 and CO2 transportation and storage. A particular focus has been dedicated to offshore pipeline design both for new installation and repurposing of existing ones. In parallel, the cooperation started between Operators, Contractors, Manufacturers, Institutions and Universities, as described in the present paper, acts as a "booster" for the consolidation of knowledge and for the advancing of technology to put in place to overcome those new challenges. Recommendations are made in relation to the gaps found in experimental evidence present in literature and gaps in Standards coverage for the proper pipeline design in those new scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳和氢气管道运输的新技术前沿
COVID-19大流行正在加速向脱碳能源系统的过渡。在这种背景下,主要的运营商和承包商必然会推动创新和技术发展。这篇论文描述了如何将其应用于海上管道的设计,这些管道现在不仅需要运输碳氢化合物,还需要运输人为的二氧化碳和低碳氢。为了评估设计二氧化碳和氢气管道所面临的所有新技术挑战,我们开展了一项最新技术研究,并在此介绍与管网设计中涉及的主要学科相关的所有新技术方面。不同的技术方面(如CCS中状态方程的性能评估、二氧化碳和氢气管道的设计标准应用、氢气管道的能量容量等)也通过分析或数值方式解决了模拟可信管道运行场景的问题。为了实现这一目标,我们正在致力于开发知识、工程工具、方法和程序,这些将成为未来H2和CO2运输和储存项目执行的基础。特别关注的是海上管道的设计,包括新安装和现有管道的重新利用。与此同时,正如本文所描述的,运营商、承包商、制造商、机构和大学之间开始的合作,是巩固知识和推进技术以克服这些新挑战的“助推器”。针对文献中存在的实验证据中的差距和标准覆盖范围中的差距提出建议,以便在这些新情况下进行适当的管道设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wellbore Cleanness Under Total Losses in Horizontal Wells: The Field Study Integrating Rock Typing Methods Including Empirical, Deterministic, Statistical, Probabilistic, Predictive Techniques and New Applications for Practical Reservoir Characterization Real Time Implementation of ESP Predictive Analytics - Towards Value Realization from Data Science The Use of 5G Technologies in the Digital Transformation of the Oil/Gas Industry Recent Case Histories of Multilateral Systems Enabling Thru Tubing Intervention in the Middle East
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1