Theodore Gabor, Semih Akin, J. Tsai, Seunghwan Jo, Feraas Al-Najjar, M. Jun
{"title":"Numerical Studies on Cold Spray Particle Deposition Using a Rectangular Nozzle","authors":"Theodore Gabor, Semih Akin, J. Tsai, Seunghwan Jo, Feraas Al-Najjar, M. Jun","doi":"10.1115/msec2022-85673","DOIUrl":null,"url":null,"abstract":"\n Cold spray additive manufacturing (CSAM) is an emerging technique for scalable and rapid deposition of thick metallic coatings on various substrates. Despite great promises, CSAM with no upper limit of coating thickness remains challenging due to the stochastic nature of cold spray (CS) deposition. In particular, using axisymmetric nozzles (i.e., circular supersonic nozzles) lead to a quasi-Gaussian shaped particle distribution on the target surface, which limits the CSAM due to the formation of triangular-shaped (i.e., peak/valley-shaped) coating morphology. Recently, rectangular cold spray nozzles have been applied to CS particle deposition, and found to be promising for CSAM owing to its more uniform particle distribution and wider spray beam. In these studies, however, process-structure properties of cold spray deposition with a rectangular nozzle have not been sufficiently elucidated. Practical expansion of rectangular nozzles in CSAM strictly depends on uncovering process-structure properties of CS deposition phenomenon. To this end, we investigate cold spray deposition of microscale particles using a rectangular nozzle through three-dimensional discrete-phase turbulent flow modeling. The numerical modeling results are experimentally justified using a dual disc anemometer setup. The influence of operating gas conditions on critical particle deposition parameters is studied. An experimental case study of cold spray particle deposition on a polymer (ABS) substrate is also conducted to show the potential of rectangular nozzle in cold-spray based polymer metallization. The results suggest that cold spraying using a rectangular nozzle is beneficial for a more uniform, compact, and higher precision particle distribution on the target surface.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
Cold spray additive manufacturing (CSAM) is an emerging technique for scalable and rapid deposition of thick metallic coatings on various substrates. Despite great promises, CSAM with no upper limit of coating thickness remains challenging due to the stochastic nature of cold spray (CS) deposition. In particular, using axisymmetric nozzles (i.e., circular supersonic nozzles) lead to a quasi-Gaussian shaped particle distribution on the target surface, which limits the CSAM due to the formation of triangular-shaped (i.e., peak/valley-shaped) coating morphology. Recently, rectangular cold spray nozzles have been applied to CS particle deposition, and found to be promising for CSAM owing to its more uniform particle distribution and wider spray beam. In these studies, however, process-structure properties of cold spray deposition with a rectangular nozzle have not been sufficiently elucidated. Practical expansion of rectangular nozzles in CSAM strictly depends on uncovering process-structure properties of CS deposition phenomenon. To this end, we investigate cold spray deposition of microscale particles using a rectangular nozzle through three-dimensional discrete-phase turbulent flow modeling. The numerical modeling results are experimentally justified using a dual disc anemometer setup. The influence of operating gas conditions on critical particle deposition parameters is studied. An experimental case study of cold spray particle deposition on a polymer (ABS) substrate is also conducted to show the potential of rectangular nozzle in cold-spray based polymer metallization. The results suggest that cold spraying using a rectangular nozzle is beneficial for a more uniform, compact, and higher precision particle distribution on the target surface.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.