{"title":"Mondrix: memory isolation for linux using mondriaan memory protection","authors":"E. Witchel, J. Rhee, K. Asanović","doi":"10.1145/1095810.1095814","DOIUrl":null,"url":null,"abstract":"This paper presents the design and an evaluation of Mondrix, a version of the Linux kernel with Mondriaan Memory Protection (MMP). MMP is a combination of hardware and software that provides efficient fine-grained memory protection between multiple protection domains sharing a linear address space. Mondrix uses MMP to enforce isolation between kernel modules which helps detect bugs, limits their damage, and improves kernel robustness and maintainability. During development, MMP exposed two kernel bugs in common, heavily-tested code, and during fault injection experiments, it prevented three of five file system corruptions.The Mondrix implementation demonstrates how MMP can bring memory isolation to modules that already exist in a large software application. It shows the benefit of isolation for robustness and error detection and prevention, while validating previous claims that the protection abstractions MMP offers are a good fit for software. This paper describes the design of the memory supervisor, the kernel module which implements permissions policy.We present an evaluation of Mondrix using full-system simulation of large kernel-intensive workloads. Experiments with several benchmarks where MMP was used extensively indicate the additional space taken by the MMP data structures reduce the kernel's free memory by less than 10%, and the kernel's runtime increases less than 15% relative to an unmodified kernel.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"94 1","pages":"31-44"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1095810.1095814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129
Abstract
This paper presents the design and an evaluation of Mondrix, a version of the Linux kernel with Mondriaan Memory Protection (MMP). MMP is a combination of hardware and software that provides efficient fine-grained memory protection between multiple protection domains sharing a linear address space. Mondrix uses MMP to enforce isolation between kernel modules which helps detect bugs, limits their damage, and improves kernel robustness and maintainability. During development, MMP exposed two kernel bugs in common, heavily-tested code, and during fault injection experiments, it prevented three of five file system corruptions.The Mondrix implementation demonstrates how MMP can bring memory isolation to modules that already exist in a large software application. It shows the benefit of isolation for robustness and error detection and prevention, while validating previous claims that the protection abstractions MMP offers are a good fit for software. This paper describes the design of the memory supervisor, the kernel module which implements permissions policy.We present an evaluation of Mondrix using full-system simulation of large kernel-intensive workloads. Experiments with several benchmarks where MMP was used extensively indicate the additional space taken by the MMP data structures reduce the kernel's free memory by less than 10%, and the kernel's runtime increases less than 15% relative to an unmodified kernel.