{"title":"DFT Study of Dimerization Sites in Imidazo[1,2-a]pyridinyl-chalcone Series","authors":"B. Konaté, S. T. Affi, N. Ziao","doi":"10.4236/cc.2021.91001","DOIUrl":null,"url":null,"abstract":"Quantum chemistry methods were performed in order to characterize the chemical reactivity on series of imidazo[1,2-a]pyridinyl-chalcone (IPC). In particular, the B3LYP/6-311G(d) theory level has been used to determine parameters which characterize the global and local reactivity on five molecules of the series. These compounds differ from one to another with the aryl groups. There are: 1-(2-methylimidazo[1,2-a]pyridin-3-yl)-3-phenylprop-2-en-1-one, 3-(4-fluorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one, 3-[4-(dimethylamino)phenyl]-1-(2-methylimidazo [1,2-a]pyridin- 3-yl)prop-2-en-1-one, 3-(2,4-dichlorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one, 3-(2,4-dichlorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one. All results lead to finding out that local nucleophilicity and electrophilicity of compounds are not substituent-dependant contrarily to their global nucleophilicity which prove to be more sensitive to the electron-donating character of the substituents. 3-[4-(Dimethylamino) phenyl]-1-(2-methylimidazo[1,2-a]pyridin-3-yl)prop-2-en-1-one was identified as the unique nucleophile compound by global reactivity. Respectively, the carbon atoms C5 and C14 are the prediction sites of electrophilic and nucleophilic attacks in the molecular skeleton of both molecules. Identification of interactions centres on IPC series is of great importance for organic synthesis and medicinal chemistry where the molecular hybridization strategy is very often used to improve biological activities of interesting therapeutic systems.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cc.2021.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
Quantum chemistry methods were performed in order to characterize the chemical reactivity on series of imidazo[1,2-a]pyridinyl-chalcone (IPC). In particular, the B3LYP/6-311G(d) theory level has been used to determine parameters which characterize the global and local reactivity on five molecules of the series. These compounds differ from one to another with the aryl groups. There are: 1-(2-methylimidazo[1,2-a]pyridin-3-yl)-3-phenylprop-2-en-1-one, 3-(4-fluorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one, 3-[4-(dimethylamino)phenyl]-1-(2-methylimidazo [1,2-a]pyridin- 3-yl)prop-2-en-1-one, 3-(2,4-dichlorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one, 3-(2,4-dichlorophenyl)-1-(2-methylimidazo [1,2-a]pyridin-3-yl)prop-2-en-1-one. All results lead to finding out that local nucleophilicity and electrophilicity of compounds are not substituent-dependant contrarily to their global nucleophilicity which prove to be more sensitive to the electron-donating character of the substituents. 3-[4-(Dimethylamino) phenyl]-1-(2-methylimidazo[1,2-a]pyridin-3-yl)prop-2-en-1-one was identified as the unique nucleophile compound by global reactivity. Respectively, the carbon atoms C5 and C14 are the prediction sites of electrophilic and nucleophilic attacks in the molecular skeleton of both molecules. Identification of interactions centres on IPC series is of great importance for organic synthesis and medicinal chemistry where the molecular hybridization strategy is very often used to improve biological activities of interesting therapeutic systems.
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.