Star-shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion Planning

Gokul Varadhan, Dinesh Manocha
{"title":"Star-shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion Planning","authors":"Gokul Varadhan, Dinesh Manocha","doi":"10.15607/RSS.2005.I.004","DOIUrl":null,"url":null,"abstract":"We present a simple algorithm for complete motion planning using deterministic sampling. Our approach relies on computing a star-shaped roadmap of the free space. We partition the free space into star-shaped regions such that a single point called the guard can see every point in the starshaped region. The resulting set of guards capture the intraregion connectivity. We capture the inter-region connectivity by computing connectors that link guards of adjacent regions. We use the guards and connectors to construct a star-shaped roadmap of the free space. We present an efficient algorithm to compute the roadmap in a deterministic manner without computing an explicit representation of the free space. We show that the star-shaped roadmap captures the connectivity of the free space while providing sufficient information to perform complete motion planning. Our approach is relatively simple to implement for robots with translational and rotational degrees of freedom (dof). We highlight the performance of our algorithm on challenging scenarios with narrow passages or when there is no collision-free path for low-dof robots.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"9 1","pages":"25-32"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

We present a simple algorithm for complete motion planning using deterministic sampling. Our approach relies on computing a star-shaped roadmap of the free space. We partition the free space into star-shaped regions such that a single point called the guard can see every point in the starshaped region. The resulting set of guards capture the intraregion connectivity. We capture the inter-region connectivity by computing connectors that link guards of adjacent regions. We use the guards and connectors to construct a star-shaped roadmap of the free space. We present an efficient algorithm to compute the roadmap in a deterministic manner without computing an explicit representation of the free space. We show that the star-shaped roadmap captures the connectivity of the free space while providing sufficient information to perform complete motion planning. Our approach is relatively simple to implement for robots with translational and rotational degrees of freedom (dof). We highlight the performance of our algorithm on challenging scenarios with narrow passages or when there is no collision-free path for low-dof robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星形路线图——完全运动规划的确定性采样方法
我们提出了一种简单的基于确定性采样的完全运动规划算法。我们的方法依赖于计算自由空间的星形路线图。我们将自由空间划分为星形区域,这样一个被称为守卫的点就可以看到星形区域中的每个点。生成的一组保护捕获区域内的连通性。我们通过计算连接相邻区域警卫的连接器来捕获区域间的连通性。我们使用护罩和连接器来构建自由空间的星形路线图。我们提出了一种有效的算法,以确定的方式计算路线图,而不计算自由空间的显式表示。我们展示了星形路线图捕获了自由空间的连通性,同时提供了足够的信息来执行完整的运动规划。对于具有平移和旋转自由度(dof)的机器人,我们的方法相对简单。我们强调了我们的算法在具有挑战性的场景中具有狭窄的通道或当低自由度机器人没有无碰撞路径时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1