Image Alignment using Norm Conserved GAT Correlation

T. Wakahara, Yukihiko Yamashita
{"title":"Image Alignment using Norm Conserved GAT Correlation","authors":"T. Wakahara, Yukihiko Yamashita","doi":"10.1109/DICTA47822.2019.8945880","DOIUrl":null,"url":null,"abstract":"This paper describes a new area-based image alignment technique, norm conserved GAT (Global Affine Transformation) correlation. The cutting-edge techniques of image alignment are mostly feature-based, such well-known techniques as SIFT, SURF, ASIFT, and ORB. The proposed technique determines affine parameters maximizing ZNCC (zero-means normalized cross-correlation) between warped and reference images. In experiments using artificially warped images subject to rotation, blur, random noise, a few kinds of general affine transformation, and a simple 2D projection transformation, we compare the proposed technique against the feature-based ORB (Oriented FAST and Rotated BRIEF), the competing areabased ECC (Enhanced Correlation Coefficient), the original GAT correlation, and the GPT (Global Projection Transformation) correlation techniques. We show a very promising ability of the proposed norm conserved GAT correlation by discussing the advantages and disadvantages of these techniques with respect to both ability of image alignment and computational complexity.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"7 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a new area-based image alignment technique, norm conserved GAT (Global Affine Transformation) correlation. The cutting-edge techniques of image alignment are mostly feature-based, such well-known techniques as SIFT, SURF, ASIFT, and ORB. The proposed technique determines affine parameters maximizing ZNCC (zero-means normalized cross-correlation) between warped and reference images. In experiments using artificially warped images subject to rotation, blur, random noise, a few kinds of general affine transformation, and a simple 2D projection transformation, we compare the proposed technique against the feature-based ORB (Oriented FAST and Rotated BRIEF), the competing areabased ECC (Enhanced Correlation Coefficient), the original GAT correlation, and the GPT (Global Projection Transformation) correlation techniques. We show a very promising ability of the proposed norm conserved GAT correlation by discussing the advantages and disadvantages of these techniques with respect to both ability of image alignment and computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用范数保守GAT相关的图像对齐
本文介绍了一种新的基于区域的图像对准技术——范数保守全局仿射变换相关。图像对齐的前沿技术大多是基于特征的,如SIFT、SURF、ASIFT、ORB等。该技术确定了扭曲图像和参考图像之间的仿射参数,使ZNCC(零均值归一化互相关)最大化。在实验中,我们使用人工扭曲的图像进行旋转、模糊、随机噪声、几种一般仿射变换和简单的二维投影变换,将所提出的技术与基于特征的ORB (Oriented FAST and rotational BRIEF)、基于竞争区域的ECC (Enhanced Correlation Coefficient)、原始GAT相关和GPT (Global projection transformation)相关技术进行比较。通过讨论这些技术在图像对齐能力和计算复杂性方面的优缺点,我们展示了所提出的范数保守GAT相关的非常有前途的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1