Joint Alignment of Multi-Task Feature and Label Spaces for Emotion Cause Pair Extraction

Shunjie Chen, Xiaochuan Shi, Jingye Li, Shengqiong Wu, Hao Fei, Fei Li, Donghong Ji
{"title":"Joint Alignment of Multi-Task Feature and Label Spaces for Emotion Cause Pair Extraction","authors":"Shunjie Chen, Xiaochuan Shi, Jingye Li, Shengqiong Wu, Hao Fei, Fei Li, Donghong Ji","doi":"10.48550/arXiv.2209.04112","DOIUrl":null,"url":null,"abstract":"Emotion cause pair extraction (ECPE), as one of the derived subtasks of emotion cause analysis (ECA), shares rich inter-related features with emotion extraction (EE) and cause extraction (CE). Therefore EE and CE are frequently utilized as auxiliary tasks for better feature learning, modeled via multi-task learning (MTL) framework by prior works to achieve state-of-the-art (SoTA) ECPE results. However, existing MTL-based methods either fail to simultaneously model the specific features and the interactive feature in between, or suffer from the inconsistency of label prediction. In this work, we consider addressing the above challenges for improving ECPE by performing two alignment mechanisms with a novel Aˆ2Net model. We first propose a feature-task alignment to explicitly model the specific emotion-&cause-specific features and the shared interactive feature. Besides, an inter-task alignment is implemented, in which the label distance between the ECPE and the combinations of EE&CE are learned to be narrowed for better label consistency. Evaluations of benchmarks show that our methods outperform current best-performing systems on all ECA subtasks. Further analysis proves the importance of our proposed alignment mechanisms for the task.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"25 1","pages":"6955-6965"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.04112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Emotion cause pair extraction (ECPE), as one of the derived subtasks of emotion cause analysis (ECA), shares rich inter-related features with emotion extraction (EE) and cause extraction (CE). Therefore EE and CE are frequently utilized as auxiliary tasks for better feature learning, modeled via multi-task learning (MTL) framework by prior works to achieve state-of-the-art (SoTA) ECPE results. However, existing MTL-based methods either fail to simultaneously model the specific features and the interactive feature in between, or suffer from the inconsistency of label prediction. In this work, we consider addressing the above challenges for improving ECPE by performing two alignment mechanisms with a novel Aˆ2Net model. We first propose a feature-task alignment to explicitly model the specific emotion-&cause-specific features and the shared interactive feature. Besides, an inter-task alignment is implemented, in which the label distance between the ECPE and the combinations of EE&CE are learned to be narrowed for better label consistency. Evaluations of benchmarks show that our methods outperform current best-performing systems on all ECA subtasks. Further analysis proves the importance of our proposed alignment mechanisms for the task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向情感原因对提取的多任务特征和标签空间联合对齐
情感原因对提取(ECPE)作为情感原因分析(ECA)的衍生子任务之一,与情感提取(EE)和原因提取(CE)具有丰富的相互关联特征。因此,EE和CE经常被用作更好的特征学习的辅助任务,通过多任务学习(MTL)框架进行建模,以获得最先进的(SoTA) ECPE结果。然而,现有的基于mtl的方法要么无法同时对特定特征和两者之间的交互特征进行建模,要么存在标签预测不一致的问题。在这项工作中,我们考虑通过使用一种新的awh2net模型执行两种对齐机制来解决上述改进ECPE的挑战。我们首先提出了一个特征-任务对齐来明确地建模特定的情感和原因特定的特征和共享的交互特征。此外,该算法还实现了任务间对齐,即学习缩小ECPE与EE&CE组合之间的标签距离,以获得更好的标签一致性。对基准的评估表明,我们的方法在所有ECA子任务上都优于当前表现最好的系统。进一步的分析证明了我们提出的校准机制对任务的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1