Spatiotemporal Deformable Part Models for Action Detection

Yicong Tian, R. Sukthankar, M. Shah
{"title":"Spatiotemporal Deformable Part Models for Action Detection","authors":"Yicong Tian, R. Sukthankar, M. Shah","doi":"10.1109/CVPR.2013.341","DOIUrl":null,"url":null,"abstract":"Deformable part models have achieved impressive performance for object detection, even on difficult image datasets. This paper explores the generalization of deformable part models from 2D images to 3D spatiotemporal volumes to better study their effectiveness for action detection in video. Actions are treated as spatiotemporal patterns and a deformable part model is generated for each action from a collection of examples. For each action model, the most discriminative 3D sub volumes are automatically selected as parts and the spatiotemporal relations between their locations are learned. By focusing on the most distinctive parts of each action, our models adapt to intra-class variation and show robustness to clutter. Extensive experiments on several video datasets demonstrate the strength of spatiotemporal DPMs for classifying and localizing actions.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"88 1","pages":"2642-2649"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"268","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 268

Abstract

Deformable part models have achieved impressive performance for object detection, even on difficult image datasets. This paper explores the generalization of deformable part models from 2D images to 3D spatiotemporal volumes to better study their effectiveness for action detection in video. Actions are treated as spatiotemporal patterns and a deformable part model is generated for each action from a collection of examples. For each action model, the most discriminative 3D sub volumes are automatically selected as parts and the spatiotemporal relations between their locations are learned. By focusing on the most distinctive parts of each action, our models adapt to intra-class variation and show robustness to clutter. Extensive experiments on several video datasets demonstrate the strength of spatiotemporal DPMs for classifying and localizing actions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动作检测的时空可变形部件模型
可变形零件模型在目标检测方面取得了令人印象深刻的表现,即使在困难的图像数据集上也是如此。本文探讨了可变形部件模型从二维图像到三维时空体的推广,以更好地研究其在视频动作检测中的有效性。动作被视为时空模式,并从一组示例中为每个动作生成可变形的部分模型。对于每个动作模型,自动选择最具判别性的三维子体作为部件,并学习其位置之间的时空关系。通过关注每个动作最独特的部分,我们的模型适应类内变化,并显示出对杂乱的鲁棒性。在多个视频数据集上的大量实验证明了时空dpm在动作分类和定位方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segment-Tree Based Cost Aggregation for Stereo Matching Event Retrieval in Large Video Collections with Circulant Temporal Encoding Articulated and Restricted Motion Subspaces and Their Signatures Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation Learning Video Saliency from Human Gaze Using Candidate Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1