Mamoona Riaz, Z. Alam, T. Zafar, U. Javed, Hanzlah Akhlaq
{"title":"Investigation of mechanical and durability properties of sustainable high-strength concrete","authors":"Mamoona Riaz, Z. Alam, T. Zafar, U. Javed, Hanzlah Akhlaq","doi":"10.1680/jfoen.22.00008","DOIUrl":null,"url":null,"abstract":"The surge in production of cement due to rapid growth of construction industry has an adverse effect on environment globally caused by the huge amount of carbon emission. In order to produce an environment friendly concrete, this study investigates the effective contribution of silica fume (SF) on various mechanical and durability characteristics of high strength concrete. In this regard, the incorporation of silica fume was adopted with a progressive proportion of 0%, 5%, 10%, 15%, 20%, 25% and 30% by weight of cement constituting various concrete mixes namely CM, SF05, SF10, SF15, SF20, SF25 and SF30 respectively. The mechanical and durability properties of concrete improved along with the incorporation of SF up to its 15% replacement. However, excessive replacement of SF have adverse effect on its mechanical and durability properties due to dilution effect of cement. Similarly, in terms of the mechanical characteristics, the proposed 15% substitution of silica fume resulted in highest compressive and flexural strengths with respect to CM. The maximum reduction in strength loss with respect to control mix was 41.17% and 28.04% for sulfuric and hydrochloric acid due to formation of densified microstructure.","PeriodicalId":42902,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Forensic Engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Forensic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jfoen.22.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
The surge in production of cement due to rapid growth of construction industry has an adverse effect on environment globally caused by the huge amount of carbon emission. In order to produce an environment friendly concrete, this study investigates the effective contribution of silica fume (SF) on various mechanical and durability characteristics of high strength concrete. In this regard, the incorporation of silica fume was adopted with a progressive proportion of 0%, 5%, 10%, 15%, 20%, 25% and 30% by weight of cement constituting various concrete mixes namely CM, SF05, SF10, SF15, SF20, SF25 and SF30 respectively. The mechanical and durability properties of concrete improved along with the incorporation of SF up to its 15% replacement. However, excessive replacement of SF have adverse effect on its mechanical and durability properties due to dilution effect of cement. Similarly, in terms of the mechanical characteristics, the proposed 15% substitution of silica fume resulted in highest compressive and flexural strengths with respect to CM. The maximum reduction in strength loss with respect to control mix was 41.17% and 28.04% for sulfuric and hydrochloric acid due to formation of densified microstructure.