{"title":"PREDICTION OF VELOCITIES OF MODERN VERTICAL MOVEMENTS OF THE EARTH’S CRUST FROM GEODETIC, GEOPHYSICAL AND SEISMOLOGICAL DATA","authors":"K. Markovich","doi":"10.5800/gt-2020-11-2-0480","DOIUrl":null,"url":null,"abstract":"АBSTRACT. The paper presents the results of the study aimed at predicting velocities of modern vertical movements of the Earth’s crust, which used the approach developed by Professor G.I. Karataev. This approach is based on mathematical simulation of geological and geophysical phenomena and an axiomatic correlation model for predicting various parameters of the crust from the data on gravitational anomalies. We pioneer in using this approach to study the territory of Belarus on the basis of geodetic, geological, geophysical and seismological data, as well as modern models showing gravitational fields and topography. This paper presents regression equations between the modern vertical movement velocities, gravitational and magnetic fields, crust thickness, and topography data. These equations give reasonably accurate data for constructing a map of forecasted modern vertical movement velocities for the territory of Belarus. Our map proves that the approach based on a correlation model and a complex of geodetic, geological, geophysical and seismological data for predicting the modern vertical movement velocities is very promising and capable of improving the reliability of forecast mapping. It should be noted that other maps of modern vertical crustal movement velocities for territories, including the geostructural elements of different ages and different types, were constructed using the method of simple linear interpolation, which is highly likely to cause prediction errors. In such case, prediction of modern vertical crustal movement velocities should be based on established patterns and correlations between the crustal movements, geophysical fields, and development history of geological structures and their elements.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-2-0480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
АBSTRACT. The paper presents the results of the study aimed at predicting velocities of modern vertical movements of the Earth’s crust, which used the approach developed by Professor G.I. Karataev. This approach is based on mathematical simulation of geological and geophysical phenomena and an axiomatic correlation model for predicting various parameters of the crust from the data on gravitational anomalies. We pioneer in using this approach to study the territory of Belarus on the basis of geodetic, geological, geophysical and seismological data, as well as modern models showing gravitational fields and topography. This paper presents regression equations between the modern vertical movement velocities, gravitational and magnetic fields, crust thickness, and topography data. These equations give reasonably accurate data for constructing a map of forecasted modern vertical movement velocities for the territory of Belarus. Our map proves that the approach based on a correlation model and a complex of geodetic, geological, geophysical and seismological data for predicting the modern vertical movement velocities is very promising and capable of improving the reliability of forecast mapping. It should be noted that other maps of modern vertical crustal movement velocities for territories, including the geostructural elements of different ages and different types, were constructed using the method of simple linear interpolation, which is highly likely to cause prediction errors. In such case, prediction of modern vertical crustal movement velocities should be based on established patterns and correlations between the crustal movements, geophysical fields, and development history of geological structures and their elements.
期刊介绍:
The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.