Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Applied Mathematics and Computer Science Pub Date : 2021-12-01 DOI:10.34768/amcs-2021-0044
Cheng Peng, Anguo Zhang, Junyu Li
{"title":"Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties","authors":"Cheng Peng, Anguo Zhang, Junyu Li","doi":"10.34768/amcs-2021-0044","DOIUrl":null,"url":null,"abstract":"Abstract The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"72 1","pages":"635 - 645"},"PeriodicalIF":1.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2021-0044","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高阶非线性不确定多智能体系统的神经自适应协同控制
研究了一类具有外部干扰和系统不确定性的高阶非线性多智能体系统的一致性问题。设计了一种基于在线更新径向基函数(RBF)神经网络的分布式自适应控制协议,并采用滑模控制方法消除了外部干扰和系统不确定性的影响。利用Lyapunov稳定性定理验证了系统的一致性,并给出了系统一致最终有界性的充分条件。两个仿真实例验证了该方法对均质和非均质质量的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
期刊最新文献
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances Choice of the p-norm for High Level Classification Features Pruning in Modern Convolutional Neural Networks With Local Sensitivity Analysis Travelling Waves for Low–Grade Glioma Growth and Response to A Chemotherapy Model Asts: Autonomous Switching of Task–Level Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1