Argue to Learn: Accelerated Argumentation-Based Learning

H. Ayoobi, M. Cao, R. Verbrugge, B. Verheij
{"title":"Argue to Learn: Accelerated Argumentation-Based Learning","authors":"H. Ayoobi, M. Cao, R. Verbrugge, B. Verheij","doi":"10.1109/ICMLA52953.2021.00183","DOIUrl":null,"url":null,"abstract":"Human agents can acquire knowledge and learn through argumentation. Inspired by this fact, we propose a novel argumentation-based machine learning technique that can be used for online incremental learning scenarios. Existing methods for online incremental learning problems typically do not generalize well from just a few learning instances. Our previous argumentation-based online incremental learning method outperformed state-of-the-art methods in terms of accuracy and learning speed. However, it was neither memory-efficient nor computationally efficient since the algorithm used the power set of the feature values for updating the model. In this paper, we propose an accelerated version of the algorithm, with polynomial instead of exponential complexity, while achieving higher learning accuracy. The proposed method is at least $200\\times$ faster than the original argumentation-based learning method and is more memory-efficient.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"54 1","pages":"1118-1123"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Human agents can acquire knowledge and learn through argumentation. Inspired by this fact, we propose a novel argumentation-based machine learning technique that can be used for online incremental learning scenarios. Existing methods for online incremental learning problems typically do not generalize well from just a few learning instances. Our previous argumentation-based online incremental learning method outperformed state-of-the-art methods in terms of accuracy and learning speed. However, it was neither memory-efficient nor computationally efficient since the algorithm used the power set of the feature values for updating the model. In this paper, we propose an accelerated version of the algorithm, with polynomial instead of exponential complexity, while achieving higher learning accuracy. The proposed method is at least $200\times$ faster than the original argumentation-based learning method and is more memory-efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类代理可以通过论证来获取知识和学习。受这一事实的启发,我们提出了一种新的基于论证的机器学习技术,可用于在线增量学习场景。现有的在线增量学习问题的方法通常不能很好地从几个学习实例中泛化。我们之前基于论证的在线增量学习方法在准确性和学习速度方面优于最先进的方法。然而,由于该算法使用特征值的幂集来更新模型,因此既不节省内存也不节省计算效率。在本文中,我们提出了该算法的加速版本,使用多项式而不是指数复杂度,同时实现了更高的学习精度。提出的方法比原始的基于论证的学习方法至少快200倍,并且更节省内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1