Dhrubajyoti Ghosh, Peeyush Gupta, S. Mehrotra, Shantanu Sharma
{"title":"Supporting Complex Query Time Enrichment For Analytics","authors":"Dhrubajyoti Ghosh, Peeyush Gupta, S. Mehrotra, Shantanu Sharma","doi":"10.48786/edbt.2023.08","DOIUrl":null,"url":null,"abstract":"Several application domains require data to be enriched prior to its use. Data enrichment is often performed using expensive machine learning models to interpret low-level data ( e . g ., models for face detection) into semantically meaningful observation. Col-lecting and enriching data offline before loading it to a database is infeasible if one desires online analysis on data as it arrives. Enriching data on the fly at insertion could result in redundant work (if applications require only a fraction of the data to be enriched) and could result in a bottleneck (if enrichment functions are expensive). Any scalable solution requires enrichment during query processing. This paper explores two different architectures for integrating enrichment into query processing – a loosely coupled approach wherein enrichment is performed outside of the DBMS and a tightly coupled approach wherein it is performed within the DBMS. The paper addresses the challenges of increased query latency due to query time enrichment.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"91 1","pages":"92-104"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Several application domains require data to be enriched prior to its use. Data enrichment is often performed using expensive machine learning models to interpret low-level data ( e . g ., models for face detection) into semantically meaningful observation. Col-lecting and enriching data offline before loading it to a database is infeasible if one desires online analysis on data as it arrives. Enriching data on the fly at insertion could result in redundant work (if applications require only a fraction of the data to be enriched) and could result in a bottleneck (if enrichment functions are expensive). Any scalable solution requires enrichment during query processing. This paper explores two different architectures for integrating enrichment into query processing – a loosely coupled approach wherein enrichment is performed outside of the DBMS and a tightly coupled approach wherein it is performed within the DBMS. The paper addresses the challenges of increased query latency due to query time enrichment.