Development of a Gas Sensor for Eucalyptol Supervision: A Supporting Tool for Extreme Wildfire Management

C. Magro, Marcelo Morais, Paulo A. Ribeiro, S. Sério, Pedro Vieira, M. Raposo
{"title":"Development of a Gas Sensor for Eucalyptol Supervision: A Supporting Tool for Extreme Wildfire Management","authors":"C. Magro, Marcelo Morais, Paulo A. Ribeiro, S. Sério, Pedro Vieira, M. Raposo","doi":"10.3390/csac2021-10432","DOIUrl":null,"url":null,"abstract":"Recent research on volatile organic compounds (VOC) released by the heated vegetation has shown that, under specific conditions (e.g., extreme heat, humidity, wind, and topography), VOC might foster wildfire ignition sources and explain sudden changes in fire behavior, particularly in the most susceptible and flammable forests (eucalypt forests). This work aims to develop an electronic nose (e-nose) based on a sensor’s array to monitor the concentration of eucalyptol, the major VOC compound of the Eucalyptus globulus tree. The detection of this target compound was achieved by measuring the impedance spectra of layer-by-layer developed thin films based on polyethyleneimine, poly(allylamine hydrochloride), and graphene oxide, by injecting the analyte into a custom-made vacuum chamber system. The obtained results were analyzed by the principal component analysis method. The developed e-nose sensor was able to distinguish different concentrations in a range from 411 to 1095 ppm.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent research on volatile organic compounds (VOC) released by the heated vegetation has shown that, under specific conditions (e.g., extreme heat, humidity, wind, and topography), VOC might foster wildfire ignition sources and explain sudden changes in fire behavior, particularly in the most susceptible and flammable forests (eucalypt forests). This work aims to develop an electronic nose (e-nose) based on a sensor’s array to monitor the concentration of eucalyptol, the major VOC compound of the Eucalyptus globulus tree. The detection of this target compound was achieved by measuring the impedance spectra of layer-by-layer developed thin films based on polyethyleneimine, poly(allylamine hydrochloride), and graphene oxide, by injecting the analyte into a custom-made vacuum chamber system. The obtained results were analyzed by the principal component analysis method. The developed e-nose sensor was able to distinguish different concentrations in a range from 411 to 1095 ppm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桉树监测气体传感器的开发:极端野火管理的辅助工具
最近对加热植被释放的挥发性有机化合物(VOC)的研究表明,在特定条件下(例如,极端高温、湿度、风和地形),VOC可能会助长野火的火源,并解释火灾行为的突然变化,特别是在最易感和易燃的森林(桉树森林)中。这项工作旨在开发一种基于传感器阵列的电子鼻(电子鼻),以监测桉树中主要挥发性有机化合物桉树醇的浓度。通过将分析物注入定制的真空室系统,通过测量基于聚乙烯亚胺、聚(丙烯胺盐酸盐)和氧化石墨烯的逐层薄膜的阻抗谱来检测该目标化合物。用主成分分析法对所得结果进行了分析。开发的电子鼻传感器能够区分从411到1095 ppm范围内的不同浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Systems Loaded with Polyphenols Extraction of Germinated Seeds by Conventional and Modern Methods A Computational Study to Identify Some Potential Inhibitors of SARS-CoV-2 Main Protease from Biological Active Quinolones Chitosan-Based Bactericidal Interpenetrated Hydrogels Treatment of Dairy Wastewaters Using Nannochloris sp. Microalgae Strain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1