Systematic Assessment of the Two-Step, One-Way Coupled Method for Computational Fluid Dynamics

N. Papafilippou, M. A. Chishty, R. Gebart
{"title":"Systematic Assessment of the Two-Step, One-Way Coupled Method for Computational Fluid Dynamics","authors":"N. Papafilippou, M. A. Chishty, R. Gebart","doi":"10.1115/1.4062111","DOIUrl":null,"url":null,"abstract":"\n This paper assesses the validity of the Two-Step, One-Way (TSOW) coupled method for computational fluid dynamics, which splits a complicated geometry into an upstream and a downstream part. The problem is solved in two steps: first, the upstream part using approximate downstream boundary conditions, followed by a solution of the downstream flow where the inlet boundary conditions are extracted from the upstream solution. The method is based on two assumptions: first, the solution for the upstream part should be identical in the common domain to a complete solution. Second, the solution for the downstream part should be identical in the common domain to a complete solution. The resulting agreement between the upstream solution and the full solution was excellent, except in the vicinity of the outflow boundary. For the assessment of the second assumption, the downstream flow was simulated with two sets of boundary conditions, one that was extracted from the full simulation, and one that came from the upstream part solution. The two solutions in the downstream geometry with slightly different boundary conditions agreed excellently with each other but exhibited small differences from the full solution. Overall, the difference to the full solution is judged to be acceptable for many engineering design situations. The solution time for the TSOW method was about 23 h faster than the full solution, which took about 85 h on the same hardware. For additional design iterations, where the same upstream geometry can be used, a 30-h gain would be obtained for each step.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper assesses the validity of the Two-Step, One-Way (TSOW) coupled method for computational fluid dynamics, which splits a complicated geometry into an upstream and a downstream part. The problem is solved in two steps: first, the upstream part using approximate downstream boundary conditions, followed by a solution of the downstream flow where the inlet boundary conditions are extracted from the upstream solution. The method is based on two assumptions: first, the solution for the upstream part should be identical in the common domain to a complete solution. Second, the solution for the downstream part should be identical in the common domain to a complete solution. The resulting agreement between the upstream solution and the full solution was excellent, except in the vicinity of the outflow boundary. For the assessment of the second assumption, the downstream flow was simulated with two sets of boundary conditions, one that was extracted from the full simulation, and one that came from the upstream part solution. The two solutions in the downstream geometry with slightly different boundary conditions agreed excellently with each other but exhibited small differences from the full solution. Overall, the difference to the full solution is judged to be acceptable for many engineering design situations. The solution time for the TSOW method was about 23 h faster than the full solution, which took about 85 h on the same hardware. For additional design iterations, where the same upstream geometry can be used, a 30-h gain would be obtained for each step.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算流体动力学两步单向耦合方法的系统评价
本文评估了计算流体动力学的两步单向(Two-Step, One-Way, TSOW)耦合方法的有效性,该方法将复杂的几何结构划分为上游和下游部分。该问题分两步求解:首先,上游部分使用近似的下游边界条件,其次是下游流动的解,其中从上游解中提取入口边界条件。该方法基于两个假设:首先,上游部分的解在公共域中应该与完整解相同。其次,下游部分的解决方案应该在公共域中与完整的解决方案相同。除了在流出边界附近,上游溶液和全溶液之间的一致性非常好。为了评估第二个假设,用两组边界条件模拟下游流动,一组是从完整模拟中提取的,另一组来自上游部分解。在边界条件略有不同的下游几何形状中,两个解的一致性很好,但与完整解的差异很小。总的来说,对于许多工程设计情况,与完整解决方案的差异被认为是可以接受的。在相同的硬件条件下,TSOW方法的解决时间比完全解决时间快约23 h,而完全解决时间约为85 h。对于额外的设计迭代,可以使用相同的上游几何形状,每一步将获得30小时的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1