Multi-State Health Transition Modeling Using Neural Networks

Qiqi Wang, Katja Hanewald, Xiaojun Wang
{"title":"Multi-State Health Transition Modeling Using Neural Networks","authors":"Qiqi Wang, Katja Hanewald, Xiaojun Wang","doi":"10.2139/ssrn.3699161","DOIUrl":null,"url":null,"abstract":"This article proposes a new model that combines a neural network with a generalized linear model (GLM) to estimate and predict health transition intensities. We introduce neural networks to health transition modeling to incorporate socioeconomic and lifestyle factors and to allow for linear and nonlinear relationships between these variables. We use transfer learning to link the models for different health transitions and improve the model estimation for health transitions with limited data. We apply the model to individual-level data from the Chinese Longitudinal Healthy Longevity Survey from 1998–2018. The results show that our model performs better in estimation and prediction than standalone GLM and neural network models. We provide new estimates of the life expectancies for a range of population subgroups. We also describe a wide range of possible applications for further health-related research, including risk prediction using health claim data and mortality prediction based on individual-level mortality data.","PeriodicalId":13563,"journal":{"name":"Insurance & Financing in Health Economics eJournal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance & Financing in Health Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3699161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a new model that combines a neural network with a generalized linear model (GLM) to estimate and predict health transition intensities. We introduce neural networks to health transition modeling to incorporate socioeconomic and lifestyle factors and to allow for linear and nonlinear relationships between these variables. We use transfer learning to link the models for different health transitions and improve the model estimation for health transitions with limited data. We apply the model to individual-level data from the Chinese Longitudinal Healthy Longevity Survey from 1998–2018. The results show that our model performs better in estimation and prediction than standalone GLM and neural network models. We provide new estimates of the life expectancies for a range of population subgroups. We also describe a wide range of possible applications for further health-related research, including risk prediction using health claim data and mortality prediction based on individual-level mortality data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的多状态健康转移建模
本文提出了一种将神经网络与广义线性模型(GLM)相结合的新模型来估计和预测健康转移强度。我们将神经网络引入健康过渡建模,以纳入社会经济和生活方式因素,并允许这些变量之间的线性和非线性关系。我们使用迁移学习来连接不同健康转移的模型,并改进有限数据下健康转移的模型估计。我们将该模型应用于1998-2018年中国纵向健康寿命调查的个人层面数据。结果表明,该模型在估计和预测方面优于独立的GLM模型和神经网络模型。我们对一系列人口亚组的预期寿命提供了新的估计。我们还描述了进一步健康相关研究的广泛可能应用,包括使用健康索赔数据进行风险预测和基于个人水平死亡率数据进行死亡率预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plugging Gaps in Payment Systems: Evidence from the Take-Up of New Medicare Billing Codes Speed Limit Enforcement and Road Safety COVID-19 Vaccination Mandates and Vaccine Uptake Ministers Engage in Favoritism Too Impacts of the COVID-19 Pandemic on Households and Workers in Oregon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1