{"title":"Towards a Sustainable Green World? A Better use of OM","authors":"Orange Didier","doi":"10.31031/SBB.2020.04.000581","DOIUrl":null,"url":null,"abstract":"In a world in constant and rapid changes, it becomes urgent that research activities adopt new methodologies to develop technological innovations allowing rapid adaptations by the policy-makers and the smallholders in respect to the environment. Nature-based solutions (NBS) and problem-solving learning (PSL) ensure active participation from the actors. By this way ecohydrology within bioengineering, bioinspiration, ecological engineering offers new opportunities for scientific activities on organic matter (OM) management to pass achievements to policy makers and the public through more active developments in social media. Then better competencies on OM management will create opportunities for technological innovations and paradigm shifts to make possible and efficient an economic and ecological asset for green production, promoting food and health security for the populations and for a sustainable environment. As more and more well known, the stationarity is dead. The Earth is a non-linear complex system. Recent discoveries on the importance of living things and their environmental feedbacks, on the role of homeostatic processes and breakpoints confirm that global warming is only part of the current ecological crisis which is also manifested by the loss of biodiversity, the loss of soil fertility, the water pollution but also the drastic increase in diseases that affect the entire living world. The current COVID-19 pandemic is just one more dramatic example. In 2020, the management of domestic wastewater remains a major global challenge, as well as feeding the poorest populations, stopping the soil losses through the galloping urbanization and mitigating the environmental quality of our cities. 2/3 of the world’s population still does not have access to sanitation, creating recurrent health and environmental disasters. The majority of them are in tropical regions, mainly in Sub-Saharan Africa, in countries whose economy does not allow the rapid development of wastewater treatment plants. It is therefore necessary to innovate and change the wastewater management model. Like international institutions (UNESCO, USAID, AFD, FFEM, etc.) and the pursuit of the SDGs for the Horizon 2030, the Research arena is highly challenged to develop technological innovations allowing changes in concepts regarding the perception of the usefulness of wastewater for green production. Domestic wastewater represents a volume of water loaded with organic matter useful for plant production (natural and agricultural), for the rational and amplified use of water and soil (maintenance of fertility, carbon storage) and for improvement of the living conditions of the populations while fully respecting their health, their environment, the soils, the waters and the biodiversity. The innovation opportunities are numerous, from process engineering to ecological engineering and bioengineering, from biogeochemist and microbiologist to creator of IoT and AI algorithm, from architect and urban planner to geographer. Then it is obvious than a better use of the residual organic matters in respect of soils, waters and local climate will help to improve the food production, the human and environmental health, the water and nutrient efficiency, the short cycles for resources consumption and local economy.","PeriodicalId":21951,"journal":{"name":"Significances of Bioengineering & Biosciences","volume":"23 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Significances of Bioengineering & Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/SBB.2020.04.000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In a world in constant and rapid changes, it becomes urgent that research activities adopt new methodologies to develop technological innovations allowing rapid adaptations by the policy-makers and the smallholders in respect to the environment. Nature-based solutions (NBS) and problem-solving learning (PSL) ensure active participation from the actors. By this way ecohydrology within bioengineering, bioinspiration, ecological engineering offers new opportunities for scientific activities on organic matter (OM) management to pass achievements to policy makers and the public through more active developments in social media. Then better competencies on OM management will create opportunities for technological innovations and paradigm shifts to make possible and efficient an economic and ecological asset for green production, promoting food and health security for the populations and for a sustainable environment. As more and more well known, the stationarity is dead. The Earth is a non-linear complex system. Recent discoveries on the importance of living things and their environmental feedbacks, on the role of homeostatic processes and breakpoints confirm that global warming is only part of the current ecological crisis which is also manifested by the loss of biodiversity, the loss of soil fertility, the water pollution but also the drastic increase in diseases that affect the entire living world. The current COVID-19 pandemic is just one more dramatic example. In 2020, the management of domestic wastewater remains a major global challenge, as well as feeding the poorest populations, stopping the soil losses through the galloping urbanization and mitigating the environmental quality of our cities. 2/3 of the world’s population still does not have access to sanitation, creating recurrent health and environmental disasters. The majority of them are in tropical regions, mainly in Sub-Saharan Africa, in countries whose economy does not allow the rapid development of wastewater treatment plants. It is therefore necessary to innovate and change the wastewater management model. Like international institutions (UNESCO, USAID, AFD, FFEM, etc.) and the pursuit of the SDGs for the Horizon 2030, the Research arena is highly challenged to develop technological innovations allowing changes in concepts regarding the perception of the usefulness of wastewater for green production. Domestic wastewater represents a volume of water loaded with organic matter useful for plant production (natural and agricultural), for the rational and amplified use of water and soil (maintenance of fertility, carbon storage) and for improvement of the living conditions of the populations while fully respecting their health, their environment, the soils, the waters and the biodiversity. The innovation opportunities are numerous, from process engineering to ecological engineering and bioengineering, from biogeochemist and microbiologist to creator of IoT and AI algorithm, from architect and urban planner to geographer. Then it is obvious than a better use of the residual organic matters in respect of soils, waters and local climate will help to improve the food production, the human and environmental health, the water and nutrient efficiency, the short cycles for resources consumption and local economy.