Martensitic Transformation Mechanism of Mg-Sc Lightweight Shape Memory Alloys

Wenbin Zhao, Kun Zhang, E. Guo, Lei Zhao, X. Tian, Chang-long Tan
{"title":"Martensitic Transformation Mechanism of Mg-Sc Lightweight Shape Memory Alloys","authors":"Wenbin Zhao, Kun Zhang, E. Guo, Lei Zhao, X. Tian, Chang-long Tan","doi":"10.2139/ssrn.3881302","DOIUrl":null,"url":null,"abstract":"Abstract Mg-Sc alloys are known as novel and promising lightweight shape memory alloys (LWSMAs), which have outstanding performance. Yet, a precise understanding of the microscopic picture and interactions governing the martensitic transformation (MT) remains elusive. We systematically investigate the MT of Mg-Sc alloys using first-principles methods. The result of generalized solid-state nudged elastic band methods confirms that no energy barrier inhibits the MT. We show that the bcc structure of Mg26Sc6 is dynamical instability at 0 K caused by electron-phonon coupling and Fermi surface nesting. Particularly, the high-temperature stability of Mg26Sc6 is revealed for the first time using the temperature-dependent effective potential method. The softening of the acoustic mode at Γ-R corresponds to two neighboring (1 0 1) planes moving towards each other, and forms martensite phase. Our calculations provide the complete and atomic-level mechanism for the MT of Mg-Sc alloys and shed some light on the design of new LWSMAs.","PeriodicalId":7765,"journal":{"name":"AMI: Scripta Materialia","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Scripta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3881302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Mg-Sc alloys are known as novel and promising lightweight shape memory alloys (LWSMAs), which have outstanding performance. Yet, a precise understanding of the microscopic picture and interactions governing the martensitic transformation (MT) remains elusive. We systematically investigate the MT of Mg-Sc alloys using first-principles methods. The result of generalized solid-state nudged elastic band methods confirms that no energy barrier inhibits the MT. We show that the bcc structure of Mg26Sc6 is dynamical instability at 0 K caused by electron-phonon coupling and Fermi surface nesting. Particularly, the high-temperature stability of Mg26Sc6 is revealed for the first time using the temperature-dependent effective potential method. The softening of the acoustic mode at Γ-R corresponds to two neighboring (1 0 1) planes moving towards each other, and forms martensite phase. Our calculations provide the complete and atomic-level mechanism for the MT of Mg-Sc alloys and shed some light on the design of new LWSMAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mg-Sc轻量化形状记忆合金马氏体相变机理研究
摘要Mg-Sc合金是一种具有优异性能的新型轻量化形状记忆合金。然而,对微观图像和控制马氏体相变(MT)的相互作用的精确理解仍然是难以捉摸的。本文采用第一性原理方法系统地研究了Mg-Sc合金的MT。广义固体轻推弹性带方法的结果证实了没有能量势垒抑制MT。我们证明了Mg26Sc6的bcc结构在0 K时是由电子-声子耦合和费米表面嵌套引起的动态不稳定性。特别是,利用温度相关有效电位法首次揭示了Mg26Sc6的高温稳定性。声波模式在Γ-R处的软化对应于相邻的两个(1 0 1)平面相互移动,形成马氏体相。我们的计算提供了Mg-Sc合金MT的完整的原子水平机制,并为新型lwsma的设计提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anomalous Growth of Dislocation Density in Titanium During Recovery Comparative Study of Stress and Strain Partitioning Behaviors in Medium Manganese and Transformation-Induced Plasticity-Aided Bainitic Ferrite Steels Mixing Entropy Threshold for Entropy-Tailored Materials Metallurgical Joining of Immiscible System: Pure Mg and Pure Fe The 3-D Aboav-Weaire Relation From Modified Mean-Field Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1