Studying the Third Cumulant of the Mixture of Dirichlet-multinomial Distributions

Farzana Afroz
{"title":"Studying the Third Cumulant of the Mixture of Dirichlet-multinomial Distributions","authors":"Farzana Afroz","doi":"10.3329/dujs.v69i2.56489","DOIUrl":null,"url":null,"abstract":"Traditionally, the overdispersion parameter ϕ is estimated by using Pearson’s lack of fit statistic X2or the Deviance statistic D, which do not perform well in the case of sparse data. This paper particularly focuses on an estimator ϕnew of overdispersion parameter which was proposed for sparse multinomial data. The estimator was derived on the basis of an assumption on the 3rd cumulant of the response variable.When the data comes from the Dirichlet-multinomial distribution ϕnew is known to have the lowest root mean squared error comparing to the other three estimators. In this paper the 1st to 3rd order raw moments of the finite mixture of Dirichlet-multinomial distributions are derived, which results in complicated mathematical expressions. Furthermore, it is found that the 3rd cumulant of this mixture does not satisfy the assumption which is considered in the derivation of ϕnew .\nDhaka Univ. J. Sci. 69(2): 96-100, 2021 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v69i2.56489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, the overdispersion parameter ϕ is estimated by using Pearson’s lack of fit statistic X2or the Deviance statistic D, which do not perform well in the case of sparse data. This paper particularly focuses on an estimator ϕnew of overdispersion parameter which was proposed for sparse multinomial data. The estimator was derived on the basis of an assumption on the 3rd cumulant of the response variable.When the data comes from the Dirichlet-multinomial distribution ϕnew is known to have the lowest root mean squared error comparing to the other three estimators. In this paper the 1st to 3rd order raw moments of the finite mixture of Dirichlet-multinomial distributions are derived, which results in complicated mathematical expressions. Furthermore, it is found that the 3rd cumulant of this mixture does not satisfy the assumption which is considered in the derivation of ϕnew . Dhaka Univ. J. Sci. 69(2): 96-100, 2021 (July)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dirichlet -多项式混合分布的第三次累积量研究
传统上,过散参数φ是通过使用Pearson的缺乏拟合统计量x2或偏差统计量D来估计的,这在稀疏数据的情况下表现不佳。本文重点研究了一种用于稀疏多项数据的过色散参数估计器。该估计量是基于对响应变量的第3个累积量的假设而导出的。当数据来自dirichlet多项分布时,与其他三个估计器相比,已知ϕnew具有最低的均方根误差。本文导出了dirichlet -多项式有限混合分布的一阶至三阶原始矩,其数学表达式十分复杂。此外,发现该混合物的第3个累积量不满足在推导中考虑的假设,这是在新的。达卡大学学报.科学69(2):96- 100,2021 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covid-19 Pandemic and Pre-pandemic Economic Shocks to Brazil, India, and Mexico: A Forecast Comparison Evaluating the Impact and Recovery New Traveling Wave Solutions to the Simplified Modified Camassa–Holm Equation and the Landau-Ginsburg-Higgs Equation Phytochemical Investigation and Biological Studies of Coffea benghalensis B. Heyne Ex Schult Synthesis and Characterization of Vanadium Doped Hexagonal Rubidium Tungsten Bronze Preparation and Characterization of Porous Carbon Material from Banana Pseudo-Stem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1