A generalized model for visualizing library popularity, adoption, and diffusion within a software ecosystem

R. Kula, Coen De Roover, D. Germán, T. Ishio, Katsuro Inoue
{"title":"A generalized model for visualizing library popularity, adoption, and diffusion within a software ecosystem","authors":"R. Kula, Coen De Roover, D. Germán, T. Ishio, Katsuro Inoue","doi":"10.1109/SANER.2018.8330217","DOIUrl":null,"url":null,"abstract":"The popularity of super repositories such as Maven Central and the CRAN is a testament to software reuse activities in both open-source and commercial projects alike. However, several studies have highlighted the risks and dangers brought about by application developers keeping dependencies on outdated library versions. Intelligent mining of super repositories could reveal hidden trends within the corresponding software ecosystem and thereby provide valuable insights for such dependency-related decisions. In this paper, we propose the Software Universe Graph (SUG) Model as a structured abstraction of the evolution of software systems and their library dependencies over time. To demonstrate the SUG's usefulness, we conduct an empirical study using 6,374 Maven artifacts and over 6,509 CRAN packages mined from their real-world ecosystems. Visualizations of the SUG model such as ‘library coexistence pairings’ and ‘dependents diffusion’ uncover popularity, adoption and diffusion patterns within each software ecosystem. Results show the Maven ecosystem as having a more conservative approach to dependency updating than the CRAN ecosystem.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"22 1","pages":"288-299"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The popularity of super repositories such as Maven Central and the CRAN is a testament to software reuse activities in both open-source and commercial projects alike. However, several studies have highlighted the risks and dangers brought about by application developers keeping dependencies on outdated library versions. Intelligent mining of super repositories could reveal hidden trends within the corresponding software ecosystem and thereby provide valuable insights for such dependency-related decisions. In this paper, we propose the Software Universe Graph (SUG) Model as a structured abstraction of the evolution of software systems and their library dependencies over time. To demonstrate the SUG's usefulness, we conduct an empirical study using 6,374 Maven artifacts and over 6,509 CRAN packages mined from their real-world ecosystems. Visualizations of the SUG model such as ‘library coexistence pairings’ and ‘dependents diffusion’ uncover popularity, adoption and diffusion patterns within each software ecosystem. Results show the Maven ecosystem as having a more conservative approach to dependency updating than the CRAN ecosystem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个用于可视化库在软件生态系统中的流行、采用和扩散的通用模型
超级存储库(如Maven Central和CRAN)的流行是开源和商业项目中软件重用活动的证明。然而,一些研究强调了应用程序开发人员依赖过时的库版本所带来的风险和危险。对超级存储库的智能挖掘可以揭示相应软件生态系统中隐藏的趋势,从而为此类依赖相关的决策提供有价值的见解。在本文中,我们提出软件宇宙图(SUG)模型作为软件系统及其库依赖关系随时间演变的结构化抽象。为了证明SUG的有用性,我们进行了一项实证研究,使用了6,374个Maven工件和超过6,509个从它们的真实生态系统中挖掘出来的CRAN包。SUG模型的可视化,如“库共存配对”和“依赖扩散”,揭示了每个软件生态系统中的流行、采用和扩散模式。结果显示,Maven生态系统在依赖项更新方面比CRAN生态系统更保守。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the integration of user feedback in automated testing of Android applications The Statechart Workbench: Enabling scalable software event log analysis using process mining Detecting code smells using machine learning techniques: Are we there yet? Classifying stack overflow posts on API issues Re-evaluating method-level bug prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1