Advanced Perspective on Human Detection system with Hybrid Feature Set

Manikandaprabu Nallasivam, V. S
{"title":"Advanced Perspective on Human Detection system with Hybrid Feature Set","authors":"Manikandaprabu Nallasivam, V. S","doi":"10.24840/2183-6493_008.006_0013","DOIUrl":null,"url":null,"abstract":"Detecting and discriminating humans in video frames for surveillance applications is a demanding task. Identifying and highlighting humans by eliminating shadows from the video frames is vital for prudence motive. In this paper, a three-step procedure is proposed, which includes motion detection by background subtraction in live video frames, morphological gradient-based shadow removal, and human detection by Hybrid Feature Set (HFS), which comprises Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP) with adaptive Neuro-Fuzzy inference system. The first step incorporates static background subtraction and dynamic background subtraction. The second step is to remove shadows by using a morphological gradient with the horizontal directional mask. The third step includes near-field, mid-field, and far-field human detection by using an adaptive Neuro-Fuzzy inference system. The results obtained from the various performed experimental analysis demonstrates diverse parametrical measures, which outperforms comparatively when benchmark databases and real-time surveillance video frames were used.\n \n ","PeriodicalId":36339,"journal":{"name":"U.Porto Journal of Engineering","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.Porto Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24840/2183-6493_008.006_0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting and discriminating humans in video frames for surveillance applications is a demanding task. Identifying and highlighting humans by eliminating shadows from the video frames is vital for prudence motive. In this paper, a three-step procedure is proposed, which includes motion detection by background subtraction in live video frames, morphological gradient-based shadow removal, and human detection by Hybrid Feature Set (HFS), which comprises Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP) with adaptive Neuro-Fuzzy inference system. The first step incorporates static background subtraction and dynamic background subtraction. The second step is to remove shadows by using a morphological gradient with the horizontal directional mask. The third step includes near-field, mid-field, and far-field human detection by using an adaptive Neuro-Fuzzy inference system. The results obtained from the various performed experimental analysis demonstrates diverse parametrical measures, which outperforms comparatively when benchmark databases and real-time surveillance video frames were used.    
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合特征集的人体检测系统研究
在监控应用中检测和区分视频帧中的人是一项艰巨的任务。通过消除视频帧中的阴影来识别和突出人物对谨慎动机至关重要。本文提出了一种三步算法,包括实时视频帧中基于背景减除的运动检测,基于形态梯度的阴影去除,以及由直方图导向梯度(HOG)和局部二值模式(LBP)组成的混合特征集(HFS)和自适应神经模糊推理系统的人体检测。第一步结合了静态背景减法和动态背景减法。第二步是通过使用形态梯度和水平方向蒙版来去除阴影。第三步包括使用自适应神经模糊推理系统进行近场、中场和远场人体检测。从各种实验分析中获得的结果显示了不同的参数度量,在使用基准数据库和实时监控视频帧时,该方法的性能相对较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
U.Porto Journal of Engineering
U.Porto Journal of Engineering Engineering-Engineering (all)
CiteScore
0.70
自引率
0.00%
发文量
58
审稿时长
20 weeks
期刊最新文献
Utilizing Heuristics and Metaheuristics for Solving the Set Covering Problem A Comparative Analysis of Machine Learning Models in News Categorization Pompan: A bread production alternative using apple pomace PHArmed: A Biological Process for PHA Production from Apple Waste Residues Editoral
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1