{"title":"BusinessDetect: An Advanced Business Information Mining Application for Intelligent Marketing","authors":"Ye Qiu, Xiaolong Gong, Zhiyi Ma","doi":"10.1109/IRI49571.2020.00074","DOIUrl":null,"url":null,"abstract":"With the arrival of the era of big data, information technology is widely applied in almost all industries. Traditional marketing is largely dependent on manpower, which is quite inefficient. Data mining combined with big data technology has become an effective solution for intelligent marketing. However, the existing marketing applications mainly concentrate on providing business information retrieval but have limited capability to discover business insights. Hence, in this paper, we propose BusinessDetect, a business information mining application that integrates complete business information and extracts appropriate knowledge to support intelligent marketing. Furthermore, we design different interfaces to display information and interact with users. The evaluation results show that BusinessDetect can provide comprehensive support for developing customers and making decisions more efficiently.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the arrival of the era of big data, information technology is widely applied in almost all industries. Traditional marketing is largely dependent on manpower, which is quite inefficient. Data mining combined with big data technology has become an effective solution for intelligent marketing. However, the existing marketing applications mainly concentrate on providing business information retrieval but have limited capability to discover business insights. Hence, in this paper, we propose BusinessDetect, a business information mining application that integrates complete business information and extracts appropriate knowledge to support intelligent marketing. Furthermore, we design different interfaces to display information and interact with users. The evaluation results show that BusinessDetect can provide comprehensive support for developing customers and making decisions more efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BusinessDetect:面向智能营销的高级商业信息挖掘应用
随着大数据时代的到来,信息技术被广泛应用于几乎所有行业。传统的营销很大程度上依赖于人力,效率很低。数据挖掘与大数据技术相结合,成为智能营销的有效解决方案。然而,现有的市场营销应用主要集中在提供业务信息检索,而发现业务洞察的能力有限。因此,在本文中,我们提出了BusinessDetect,这是一个商业信息挖掘应用程序,它集成了完整的商业信息并提取适当的知识来支持智能营销。此外,我们还设计了不同的界面来显示信息并与用户进行交互。评价结果表明,BusinessDetect可以为开发客户和提高决策效率提供全面的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1