Introducing a New Estimators of Parameters of Linear Hazard Rate Function

Lekaa Ali Mohamed
{"title":"Introducing a New Estimators of Parameters of Linear Hazard Rate Function","authors":"Lekaa Ali Mohamed","doi":"10.5251/AJSIR.2013.4.1.36.43","DOIUrl":null,"url":null,"abstract":"This paper deals with introducing four estimators of parameters ( ), for linear hazard (risk) function { }. Two consist of the proposed which are mixed estimators, and the proposed estimator depend on order record data. While the two other methods, include maximum likelihood method which are solved numerically, using Newton Raphson method, and last method is white estimators depend on principle of least square's method. The comparison between ( ), has been done through simulation experiment for different sample size chosen and replicate is ( ). The statistical measure mean square error (MSE) is used for comparison. All results are explained through tables, for different sets of chosen parameters. Keyword: Hazard rate { }, maximum likelihood, OLS, proposed method, mean square error (MSE).","PeriodicalId":7661,"journal":{"name":"American Journal of Scientific and Industrial Research","volume":"35 1","pages":"36-43"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Scientific and Industrial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5251/AJSIR.2013.4.1.36.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with introducing four estimators of parameters ( ), for linear hazard (risk) function { }. Two consist of the proposed which are mixed estimators, and the proposed estimator depend on order record data. While the two other methods, include maximum likelihood method which are solved numerically, using Newton Raphson method, and last method is white estimators depend on principle of least square's method. The comparison between ( ), has been done through simulation experiment for different sample size chosen and replicate is ( ). The statistical measure mean square error (MSE) is used for comparison. All results are explained through tables, for different sets of chosen parameters. Keyword: Hazard rate { }, maximum likelihood, OLS, proposed method, mean square error (MSE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引入一种新的线性危害率函数参数估计
本文讨论了线性危险(风险)函数{}的参数()的四个估计量。其中两种是混合估计器,混合估计器依赖于订单记录数据。另外两种方法分别是利用Newton Raphson方法进行数值求解的极大似然法和基于最小二乘法原理的白色估计法。()之间的比较,通过模拟实验对选择的不同样本量进行了比较,重复为()。统计测量均方误差(MSE)用于比较。对于所选参数的不同集合,所有结果都通过表格进行解释。关键词:风险率{},最大似然,OLS,建议方法,均方误差(MSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Family of Non-Standard Finite Difference Schemes for the Logistic Equations The potential of removing toxic elements from red sea water by using functionalised natural zeolite and synthetic zeolite Modelling catalyst regeneration in an industrial FCC unit Synthesis of zeolites and their applications as Ion exchange to remove water hardness On some models based on first order differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1