Donghai Bao, Fang Yang, Qianru Jiang, Sheng Li, Xiongxiong He
{"title":"Block RLS algorithm for surveillance video processing based on image sparse representation","authors":"Donghai Bao, Fang Yang, Qianru Jiang, Sheng Li, Xiongxiong He","doi":"10.1109/CCDC.2017.7978879","DOIUrl":null,"url":null,"abstract":"Block recursive least square (BRLS) algorithm for dictionary learning in compressed sensing system is developed for surveillance video processing. The new method uses image blocks directly and iteratively to train dictionaries via BRLS algorithm, which is different from classical methods that require to transform blocks to columns first and then giving all training blocks at one time. Since the background in surveillance video is almost fixed, the residual of foreground can be represented sparsely and reconstructed with background subtraction directly. The new method and framework are applied in real image and surveillance video processing. Simulation results show that the new method achieves better representation performance than classical ones in both image and surveillance video.","PeriodicalId":6588,"journal":{"name":"2017 29th Chinese Control And Decision Conference (CCDC)","volume":"10 1","pages":"2195-2200"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2017.7978879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Block recursive least square (BRLS) algorithm for dictionary learning in compressed sensing system is developed for surveillance video processing. The new method uses image blocks directly and iteratively to train dictionaries via BRLS algorithm, which is different from classical methods that require to transform blocks to columns first and then giving all training blocks at one time. Since the background in surveillance video is almost fixed, the residual of foreground can be represented sparsely and reconstructed with background subtraction directly. The new method and framework are applied in real image and surveillance video processing. Simulation results show that the new method achieves better representation performance than classical ones in both image and surveillance video.