Molecular Modelling of Oryza sativa Starch-branching Enzyme 1

Sulaiman Mohammed, Mohammed Jibrin Ndejiko, M. M. Usman, Y. Kaya, F. Huyop
{"title":"Molecular Modelling of Oryza sativa Starch-branching Enzyme 1","authors":"Sulaiman Mohammed, Mohammed Jibrin Ndejiko, M. M. Usman, Y. Kaya, F. Huyop","doi":"10.54987/jobimb.v8i1.501","DOIUrl":null,"url":null,"abstract":"Starch-branching enzymes (SBE) serves as the only enzyme generating glucan branches in green plants and consequently plays a significant role on the resulting starch final structure. Research on rice (Oryza sativa) SBE1 (OsSBE1) structural biology remain untapped. Therefore, there is a necessity for research on the enzyme molecular structure which could lead to the protein function annotation, starch production and energy booster drug design. Analysis of OsSBE1 secondary structure, domains and their interactions, enzyme 3D structure prediction and validation based on C-score were carried out. The OsSBE1 primary sequence was retrieved from GenBank and its secondary structure was predicted to be; α-helix (27.68%), extended strand (22.78%) and higher random coil (949.54%). Enzyme domains were found to be carbohydrate-binding module (CBM) 48 (isoamylase N-terminal domain), α-amylase catalytic domain and α-amylase C-terminal all-beta domain with active sites important amino acids asparagine and glutamic acid. From the five 3D models generated, model 3 displayed best prediction. The Ramachandran refinement has 97.3 amino acids residues in favoured region and 0.4 C-score. This bioinformatics study has elucidated on the OsSBE1 molecular model and first to report on its domain interaction.","PeriodicalId":15132,"journal":{"name":"Journal of Biochemistry, Microbiology and Biotechnology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemistry, Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54987/jobimb.v8i1.501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Starch-branching enzymes (SBE) serves as the only enzyme generating glucan branches in green plants and consequently plays a significant role on the resulting starch final structure. Research on rice (Oryza sativa) SBE1 (OsSBE1) structural biology remain untapped. Therefore, there is a necessity for research on the enzyme molecular structure which could lead to the protein function annotation, starch production and energy booster drug design. Analysis of OsSBE1 secondary structure, domains and their interactions, enzyme 3D structure prediction and validation based on C-score were carried out. The OsSBE1 primary sequence was retrieved from GenBank and its secondary structure was predicted to be; α-helix (27.68%), extended strand (22.78%) and higher random coil (949.54%). Enzyme domains were found to be carbohydrate-binding module (CBM) 48 (isoamylase N-terminal domain), α-amylase catalytic domain and α-amylase C-terminal all-beta domain with active sites important amino acids asparagine and glutamic acid. From the five 3D models generated, model 3 displayed best prediction. The Ramachandran refinement has 97.3 amino acids residues in favoured region and 0.4 C-score. This bioinformatics study has elucidated on the OsSBE1 molecular model and first to report on its domain interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水稻淀粉支化酶1的分子模拟
淀粉分支酶(starch -branching enzyme, SBE)是绿色植物中唯一产生葡聚糖分支的酶,对淀粉的最终结构起着重要的作用。水稻(Oryza sativa) SBE1 (OsSBE1)的结构生物学研究尚未开展。因此,有必要对酶的分子结构进行研究,以指导蛋白质功能注释、淀粉生产和能量增强药物设计。分析OsSBE1的二级结构、结构域及其相互作用,并基于C-score进行酶三维结构预测和验证。从GenBank中检索到OsSBE1的一级序列,预测其二级结构为;α-螺旋(27.68%),延伸链(22.78%)和高随机线圈(949.54%)。酶结构域为碳水化合物结合模块(CBM) 48(异淀粉酶n端结构域)、α-淀粉酶催化结构域和α-淀粉酶c端全β结构域,具有重要氨基酸天冬酰胺和谷氨酸的活性位点。在生成的5个3D模型中,模型3的预测效果最好。Ramachandran精馏在有利区有97.3个氨基酸残基,C-score为0.4。本生物信息学研究阐明了OsSBE1的分子模型,并首次报道了其结构域相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological and Physicochemical Evaluation of Palm Oil Mill Effluent Final Discharge from Negeri Sembilan, Malaysia Signalling Mechanism in TRPM2-dependent Copper- induced HT22 Cell Death Isolation, Characterization and Screening of Potential Lambda-Cyhalothrin-Degrading Bacteria from Cultivated Soil in Moro, Kwara State, Nigeria Prevalence of Helminth Parasites in Commercially Marketed Fruits and Vegetables in Selected Markets in Lokoja Metropolis, Kogi State, Nigeria Seasonal Patterns and Genetic Variability of Aedes Mosquitoes in Some Selected Communities of Maiduguri Metropolitan Council, Borno State, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1