A fully integrated 2×1 dual-band direct-conversion transceiver with dual-mode fractional divider and noise-shaping TIA for mobile WiMAX SoC in 65nm CMOS
J. Deguchi, D. Miyashita, Y. Ogasawara, Gaku Takemura, Masaomi Iwanaga, K. Sami, R. Ito, J. Wadatsumi, Y. Tsuda, S. Oda, S. Kawaguchi, N. Itoh, M. Hamada
{"title":"A fully integrated 2×1 dual-band direct-conversion transceiver with dual-mode fractional divider and noise-shaping TIA for mobile WiMAX SoC in 65nm CMOS","authors":"J. Deguchi, D. Miyashita, Y. Ogasawara, Gaku Takemura, Masaomi Iwanaga, K. Sami, R. Ito, J. Wadatsumi, Y. Tsuda, S. Oda, S. Kawaguchi, N. Itoh, M. Hamada","doi":"10.1109/ISSCC.2010.5433966","DOIUrl":null,"url":null,"abstract":"Mobile WiMAX complying with the IEEE 802.16e standard is one of the emerging standards and is achieving world-wide penetration. Low-cost implementation is essential and single-chip implementation is a straightforward approach. However, there are many technical challenges such as floor-planning, signal integrity and scalability of analog/RF circuits in an SoC, as well as power reduction in scaled CMOS technologies. In this work, we have designed and fabricated a fully-integrated 2RX × 1TX dual-band direct-conversion transceiver having digital interfaces for a mWiMAX SoC in a 65nm pure CMOS technology. To cope with the constraints of floor-planning while maintaining the signal integrity, inductorless local oscillator (LO) distribution using compact dual-mode fractional dividers is introduced, leading to the reduction of die area. Total noise figure of 3.8dB is achieved by a novel noise-shaping transimpedance amplifier to mitigate the flicker noise of a scaled CMOS device.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"84 1","pages":"456-457"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Mobile WiMAX complying with the IEEE 802.16e standard is one of the emerging standards and is achieving world-wide penetration. Low-cost implementation is essential and single-chip implementation is a straightforward approach. However, there are many technical challenges such as floor-planning, signal integrity and scalability of analog/RF circuits in an SoC, as well as power reduction in scaled CMOS technologies. In this work, we have designed and fabricated a fully-integrated 2RX × 1TX dual-band direct-conversion transceiver having digital interfaces for a mWiMAX SoC in a 65nm pure CMOS technology. To cope with the constraints of floor-planning while maintaining the signal integrity, inductorless local oscillator (LO) distribution using compact dual-mode fractional dividers is introduced, leading to the reduction of die area. Total noise figure of 3.8dB is achieved by a novel noise-shaping transimpedance amplifier to mitigate the flicker noise of a scaled CMOS device.