WEB-based Collaborative Platform for College English Teaching

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0140291
Yuwan Zhang
{"title":"WEB-based Collaborative Platform for College English Teaching","authors":"Yuwan Zhang","doi":"10.14569/ijacsa.2023.0140291","DOIUrl":null,"url":null,"abstract":"—At present, colleges and universities are trying to apply online education. The online college English course teaching cooperation platform is an important part of college English teaching. At present, teachers’ scoring method for students’ online examination on this kind of platform is mainly human scoring, which has a low efficiency. In view of this, based on the characteristics of web, this paper constructs an English test paper scoring algorithm based on text matching degree algorithm and improved KNN algorithm. The data analysis type of the algorithm is mainly prescriptive analysis that is, judging whether to give points according to the characteristics of the data. The automation and high efficiency of the algorithm can save a lot of human costs in the field of online education. The experimental results show that the recall rate of the improved KNN scoring algorithm for specific semantic topics is up to 0.9, and only 7.3% of students report that the algorithm misjudges their grades. The results indicate that the algorithm has the potential to be applied to the Web-based college English course teaching collaboration platform and reduce the workload of teachers and improve their efficiency.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

—At present, colleges and universities are trying to apply online education. The online college English course teaching cooperation platform is an important part of college English teaching. At present, teachers’ scoring method for students’ online examination on this kind of platform is mainly human scoring, which has a low efficiency. In view of this, based on the characteristics of web, this paper constructs an English test paper scoring algorithm based on text matching degree algorithm and improved KNN algorithm. The data analysis type of the algorithm is mainly prescriptive analysis that is, judging whether to give points according to the characteristics of the data. The automation and high efficiency of the algorithm can save a lot of human costs in the field of online education. The experimental results show that the recall rate of the improved KNN scoring algorithm for specific semantic topics is up to 0.9, and only 7.3% of students report that the algorithm misjudges their grades. The results indicate that the algorithm has the potential to be applied to the Web-based college English course teaching collaboration platform and reduce the workload of teachers and improve their efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网络的大学英语协同教学平台
——目前,高校都在尝试应用网络教育。大学英语在线课程教学合作平台是大学英语教学的重要组成部分。目前,教师在这类平台上对学生在线考试的评分方式主要是人工评分,效率较低。鉴于此,本文基于web的特点,构建了一种基于文本匹配度算法和改进的KNN算法的英语试卷评分算法。该算法的数据分析类型主要是规定性分析,即根据数据的特点判断是否给分。该算法的自动化和高效率可以为在线教育领域节省大量的人力成本。实验结果表明,改进的KNN评分算法对特定语义主题的召回率高达0.9,只有7.3%的学生报告算法误判了他们的成绩。结果表明,该算法具有应用于基于网络的大学英语课程教学协作平台的潜力,可以减轻教师的工作量,提高教师的工作效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1