The polynomial method strikes back: tight quantum query bounds via dual polynomials

Mark Bun, Robin Kothari, J. Thaler
{"title":"The polynomial method strikes back: tight quantum query bounds via dual polynomials","authors":"Mark Bun, Robin Kothari, J. Thaler","doi":"10.1145/3188745.3188784","DOIUrl":null,"url":null,"abstract":"The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We resolve or nearly resolve the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following: *k-distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). *Image Size Testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n] → [n] is Ω(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. **k-junta testing: A tight Ω(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). **Statistical Distance from Uniform: A tight Ω(n1/2) lower bound for approximating the statistical distance from uniform of a distribution, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). **Shannon entropy: A tight Ω(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). *Surjectivity: The approximate degree of the Surjectivity function is Ω(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of Õ(n3/4) due to Sherstov, which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for Surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We resolve or nearly resolve the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following: *k-distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). *Image Size Testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n] → [n] is Ω(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. **k-junta testing: A tight Ω(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). **Statistical Distance from Uniform: A tight Ω(n1/2) lower bound for approximating the statistical distance from uniform of a distribution, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). **Shannon entropy: A tight Ω(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). *Surjectivity: The approximate degree of the Surjectivity function is Ω(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of Õ(n3/4) due to Sherstov, which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for Surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多项式方法反击:紧量子查询界通过对偶多项式
布尔函数f的近似度数是实多项式的最小度数,它对f逐点逼近,误差不超过1/3。已知f的近似度是f的量子查询复杂度的下界(Beals et al., FOCS 1998 and J. ACM 2001)。我们解决或接近解决了几个基本函数的近似度和量子查询复杂性。*k-distinctness:对于任意常数k, k-distinctness函数的近似度和量子查询复杂度为Ω(n3/4−1/(2k))。对于大k,这几乎是紧的,因为Belovs (FOCS 2012)已经表明,对于任意常数k, k-distinctness的近似程度和量子查询复杂度为O(n3/4−1/(2k+2−4))。*图像大小测试:测试函数[n]→[n]的图像大小的近似程度和量子查询复杂度为Ω(n1/2)。这证明了Ambainis et al. (SODA 2016)的一个猜想,它暗示了以下自然问题的近似程度和量子查询复杂性的紧密下界。**k-军政府测试:k-军政府测试的严格Ω(k1/2)下界,回答了Ambainis等人(SODA 2016)的主要开放问题。**离均匀的统计距离:近似分布离均匀的统计距离的一个紧密的Ω(n1/2)下界,回答了Bravyi等人(STACS 2010和IEEE Trans)留下的主要问题。Inf. Theory 2011)。**香农熵:一个紧密的Ω(n1/2)下界,用于逼近香农熵到某个附加常数,回答了Li和Wu(2017)的问题。*满射性:满射性函数的近似程度为Ω(n3/4)。最佳先验下界为Ω(n2/3)。由于Sherstov,我们的结果符合Õ(n3/4)的上界,我们使用不同的技术对其进行了修正。已知该函数的量子查询复杂度为Θ(n) (Beame和Machmouchi, quantum Inf. computer . 2012和Sherstov, FOCS 2015)。我们的满性上界引入了用低次多项式逼近布尔函数的新技术。我们的下限被Bun和Thaler最近引入的显著改进技术证明(FOCS 2017)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1