{"title":"Attention-based Graph ResNet with focal loss for epileptic seizure detection","authors":"Changxu Dong, Yanna Zhao, Gaobo Zhang, Mingrui Xue, Dengyu Chu, Jiatong He, Xinting Ge","doi":"10.3233/ais-210086","DOIUrl":null,"url":null,"abstract":"Epilepsy is a chronic brain disease resulted from the central nervous system lesion, which leads to repeated seizure occurs for the patients. Automatic seizure detection with Electroencephalogram (EEG) has witnessed great progress. However, existing methods paid little attention to the topological relationships of different EEG electrodes. Latest neuroscience researches have demonstrated the connectivity between different brain regions. Besides, class-imbalance is a common problem in EEG based seizure detection. The duration of epileptic EEG signals is much shorter than that of normal signals. In order to deal with the above mentioned two challenges, we propose to model the multi-channel EEG data using the Attention-based Graph ResNet (AGRN). In particular, each channel of the EEG signal represents a node of the graph and the inter-channel relations are modeled via the adjacency matrix in the graph. The loss function of the ARGN model is re-designed using focal loss to cope with the class-imbalance problem. The proposed ARGN with focal model could learn discriminative features from the raw EEG data. Experiments are carried out on the CHB-MIT dataset. The proposed model achieves an average accuracy of 98.70%, a sensitivity of 97.94%, a specificity of 98.66% and a precision of 98.62%. The Area Under the ROC Curve (AUC) is 98.69%.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"186 6 1","pages":"61-73"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-210086","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Epilepsy is a chronic brain disease resulted from the central nervous system lesion, which leads to repeated seizure occurs for the patients. Automatic seizure detection with Electroencephalogram (EEG) has witnessed great progress. However, existing methods paid little attention to the topological relationships of different EEG electrodes. Latest neuroscience researches have demonstrated the connectivity between different brain regions. Besides, class-imbalance is a common problem in EEG based seizure detection. The duration of epileptic EEG signals is much shorter than that of normal signals. In order to deal with the above mentioned two challenges, we propose to model the multi-channel EEG data using the Attention-based Graph ResNet (AGRN). In particular, each channel of the EEG signal represents a node of the graph and the inter-channel relations are modeled via the adjacency matrix in the graph. The loss function of the ARGN model is re-designed using focal loss to cope with the class-imbalance problem. The proposed ARGN with focal model could learn discriminative features from the raw EEG data. Experiments are carried out on the CHB-MIT dataset. The proposed model achieves an average accuracy of 98.70%, a sensitivity of 97.94%, a specificity of 98.66% and a precision of 98.62%. The Area Under the ROC Curve (AUC) is 98.69%.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.