A Machine Learning Approach to Anaphora Resolution in Nepali Language

Apurbalal Senapati, Arun Poudyal, P. Adhikary, Sahana Kaushar, Anmol Mahajan, Baidya Nath Saha
{"title":"A Machine Learning Approach to Anaphora Resolution in Nepali Language","authors":"Apurbalal Senapati, Arun Poudyal, P. Adhikary, Sahana Kaushar, Anmol Mahajan, Baidya Nath Saha","doi":"10.1109/ComPE49325.2020.9200135","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt a machine learning (ML) approach to Anaphora Resolution (AR) system in Nepali language. It is one of the pioneering approaches in anaphora resolution using machine learning in Nepali language, which is a resource-limited language. For this work, we have developed our own data set in the standard format available in this domain. Data has been tagged with the necessary information like Parts-of-speech (POS), Named entity, Chunking information, Gender, Number, Person, etc. We divided the data for training and testing purposes in approximately 5:1 ratio and ML classifiers are used for training and testing. Results show encouraging for further progress.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"117 1","pages":"436-441"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9200135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we attempt a machine learning (ML) approach to Anaphora Resolution (AR) system in Nepali language. It is one of the pioneering approaches in anaphora resolution using machine learning in Nepali language, which is a resource-limited language. For this work, we have developed our own data set in the standard format available in this domain. Data has been tagged with the necessary information like Parts-of-speech (POS), Named entity, Chunking information, Gender, Number, Person, etc. We divided the data for training and testing purposes in approximately 5:1 ratio and ML classifiers are used for training and testing. Results show encouraging for further progress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尼泊尔语回指消解的机器学习方法
在本文中,我们尝试了一种机器学习(ML)方法来实现尼泊尔语的回指解析(AR)系统。尼泊尔语是一种资源有限的语言,它是利用机器学习来解决回指的先驱方法之一。为了这项工作,我们开发了我们自己的标准格式的数据集。数据已经标注了必要的信息,如词性(POS)、命名实体、分块信息、性别、数字、人等。我们将用于训练和测试目的的数据以大约5:1的比例划分,并将ML分类器用于训练和测试。结果显示出令人鼓舞的进一步进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Architecture Search with Improved Genetic Algorithm for Image Classification Electricity Demand Prediction using Data Driven Forecasting Scheme: ARIMA and SARIMA for Real-Time Load Data of Assam Freeware Solution for Preventing Data Leakage by Insider for Windows Framework Developing a Highly Secure and High Capacity LSB Steganography Technique using PRNG Assessment of Technical Parameters of Renewable Energy System : An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1