Low-Latency Speculative Inference on Distributed Multi-Modal Data Streams

IF 0.7 Q4 TELECOMMUNICATIONS GetMobile-Mobile Computing & Communications Review Pub Date : 2022-10-07 DOI:10.1145/3568113.3568121
Tianxing Li, Jin Huang, Erik Risinger, Deepak Ganesan
{"title":"Low-Latency Speculative Inference on Distributed Multi-Modal Data Streams","authors":"Tianxing Li, Jin Huang, Erik Risinger, Deepak Ganesan","doi":"10.1145/3568113.3568121","DOIUrl":null,"url":null,"abstract":"While multi-modal deep learning is useful in distributed sensing tasks like human tracking, activity recognition, and audio and video analysis, deploying state-of-the-art multi-modal models in a wirelessly networked sensor system poses unique challenges. The data sizes for different modalities can be highly asymmetric (e.g., video vs. audio), and these differences can lead to significant delays between streams in the presence of wireless dynamics. Therefore, a slow stream can significantly slow down a multimodal inference system in the cloud, leading to either increased latency (when blocked by the slow stream) or degradation in inference accuracy (if inference proceeds without waiting).","PeriodicalId":29918,"journal":{"name":"GetMobile-Mobile Computing & Communications Review","volume":"43 1","pages":"23 - 26"},"PeriodicalIF":0.7000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile-Mobile Computing & Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568113.3568121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 13

Abstract

While multi-modal deep learning is useful in distributed sensing tasks like human tracking, activity recognition, and audio and video analysis, deploying state-of-the-art multi-modal models in a wirelessly networked sensor system poses unique challenges. The data sizes for different modalities can be highly asymmetric (e.g., video vs. audio), and these differences can lead to significant delays between streams in the presence of wireless dynamics. Therefore, a slow stream can significantly slow down a multimodal inference system in the cloud, leading to either increased latency (when blocked by the slow stream) or degradation in inference accuracy (if inference proceeds without waiting).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式多模态数据流的低延迟推测推断
虽然多模态深度学习在人体跟踪、活动识别、音频和视频分析等分布式传感任务中很有用,但在无线网络传感器系统中部署最先进的多模态模型带来了独特的挑战。不同模式的数据大小可能是高度不对称的(例如,视频与音频),这些差异可能导致存在无线动态的流之间的显著延迟。因此,慢流会显著降低云中的多模态推理系统的速度,导致延迟增加(当被慢流阻塞时)或推理精度降低(如果推理不等待就进行)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
34
期刊最新文献
Acoustic Localization of Drones in Precise Landing: The Research and Practice with MicNest An Overview of 3GPP Standardization for Extended Reality (XR) in 5G and Beyond Community-Driven Mobile and Ubiquitous Computing A New Design Paradigm for Polymorphic Backscatter Radios Leakyscatter: Scaling Wireless Backscatter Above 100 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1