Geometric intuition and algorithms for Ev-SVM

Á. Jiménez, A. Takeda, J. Lázaro
{"title":"Geometric intuition and algorithms for Ev-SVM","authors":"Á. Jiménez, A. Takeda, J. Lázaro","doi":"10.5555/2789272.2789283","DOIUrl":null,"url":null,"abstract":"In this work we address the Ev-SVM model proposed by Perez-Cruz et al. as an extension of the traditional v support vector classification model (v-SVM). Through an enhancement of the range of admissible values for the regularization parameter v, the Ev-SVM has been shown to be able to produce a wider variety of decision functions, giving rise to a better adaptability to the data. However, while a clear and intuitive geometric interpretation can be given for the v-SVM model as a nearest-point problem in reduced convex hulls (RCH-NPP), no previous work has been made in developing such intuition for the Ev-SVM model. In this paper we show how Ev-SVM can be reformulated as a geometrical problem that generalizes RCH-NPP, providing new insights into this model. Under this novel point of view, we propose the RapMinos algorithm, able to solve Ev-SVM more efficiently than the current methods. Furthermore, we show how RapMinos is able to address the Ev-SVM model for any choice of regularization norm lp ≥1 seamlessly, which further extends the SVM model flexibility beyond the usual Ev-SVM models.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"29 1","pages":"323-369"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2789283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work we address the Ev-SVM model proposed by Perez-Cruz et al. as an extension of the traditional v support vector classification model (v-SVM). Through an enhancement of the range of admissible values for the regularization parameter v, the Ev-SVM has been shown to be able to produce a wider variety of decision functions, giving rise to a better adaptability to the data. However, while a clear and intuitive geometric interpretation can be given for the v-SVM model as a nearest-point problem in reduced convex hulls (RCH-NPP), no previous work has been made in developing such intuition for the Ev-SVM model. In this paper we show how Ev-SVM can be reformulated as a geometrical problem that generalizes RCH-NPP, providing new insights into this model. Under this novel point of view, we propose the RapMinos algorithm, able to solve Ev-SVM more efficiently than the current methods. Furthermore, we show how RapMinos is able to address the Ev-SVM model for any choice of regularization norm lp ≥1 seamlessly, which further extends the SVM model flexibility beyond the usual Ev-SVM models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ev-SVM的几何直觉与算法
在这项工作中,我们解决了Perez-Cruz等人提出的Ev-SVM模型,作为传统v支持向量分类模型(v- svm)的扩展。通过增强正则化参数v的容许值范围,Ev-SVM已被证明能够产生更广泛的决策函数,从而对数据具有更好的适应性。然而,虽然v-SVM模型可以作为简化凸包(RCH-NPP)的最近点问题给出清晰直观的几何解释,但之前没有工作为Ev-SVM模型开发这种直觉。在本文中,我们展示了Ev-SVM如何可以被重新表述为概括RCH-NPP的几何问题,为该模型提供了新的见解。在这种新观点下,我们提出了RapMinos算法,能够比现有方法更有效地求解Ev-SVM。此外,我们展示了RapMinos如何能够无缝地解决Ev-SVM模型中任意正则化范数lp≥1的选择,这进一步扩展了SVM模型的灵活性,超出了通常的Ev-SVM模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1