Regularized Mislevy-Wu Model for Handling Nonignorable Missing Item Responses

Inf. Comput. Pub Date : 2023-06-28 DOI:10.3390/info14070368
A. Robitzsch
{"title":"Regularized Mislevy-Wu Model for Handling Nonignorable Missing Item Responses","authors":"A. Robitzsch","doi":"10.3390/info14070368","DOIUrl":null,"url":null,"abstract":"Missing item responses are frequently found in educational large-scale assessment studies. In this article, the Mislevy-Wu item response model is applied for handling nonignorable missing item responses. This model allows that the missingness of an item depends on the item itself and a further latent variable. However, with low to moderate amounts of missing item responses, model parameters for the missingness mechanism are difficult to estimate. Hence, regularized estimation using a fused ridge penalty is applied to the Mislevy-Wu model to stabilize estimation. The fused ridge penalty function is separately defined for multiple-choice and constructed response items because previous research indicated that the missingness mechanisms strongly differed for the two item types. In a simulation study, it turned out that regularized estimation improves the stability of item parameter estimation. The method is also illustrated using international data from the progress in international reading literacy study (PIRLS) 2011 data.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":"24 1","pages":"368"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Missing item responses are frequently found in educational large-scale assessment studies. In this article, the Mislevy-Wu item response model is applied for handling nonignorable missing item responses. This model allows that the missingness of an item depends on the item itself and a further latent variable. However, with low to moderate amounts of missing item responses, model parameters for the missingness mechanism are difficult to estimate. Hence, regularized estimation using a fused ridge penalty is applied to the Mislevy-Wu model to stabilize estimation. The fused ridge penalty function is separately defined for multiple-choice and constructed response items because previous research indicated that the missingness mechanisms strongly differed for the two item types. In a simulation study, it turned out that regularized estimation improves the stability of item parameter estimation. The method is also illustrated using international data from the progress in international reading literacy study (PIRLS) 2011 data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理不可忽略缺失项响应的正则Mislevy-Wu模型
在教育大规模评估研究中,经常发现缺失项目反应。本文采用Mislevy-Wu项目响应模型来处理不可忽略的缺失项目响应。该模型允许项目的缺失取决于项目本身和一个进一步的潜在变量。然而,对于低到中等数量的缺失项目反应,缺失机制的模型参数很难估计。因此,将融合脊罚的正则化估计应用于Mislevy-Wu模型以稳定估计。由于以往的研究表明,两种类型的缺失机制存在明显差异,因此将多项选择题和建构题的融合脊罚函数分开定义。仿真研究表明,正则化估计提高了项目参数估计的稳定性。该方法还使用2011年国际阅读素养研究进展(PIRLS)数据中的国际数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1