Optimization of Multi-Criterial Selection Algorithm with a Dynamically Filled Large Set of Alternatives

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2021-05-18 DOI:10.17587/IT.27.235-241
S. Kolesnikova, S. A. Karavanova
{"title":"Optimization of Multi-Criterial Selection Algorithm with a Dynamically Filled Large Set of Alternatives","authors":"S. Kolesnikova, S. A. Karavanova","doi":"10.17587/IT.27.235-241","DOIUrl":null,"url":null,"abstract":"We consider the problem of the correct ranking of a dynamically replenished large set of alternatives in multicriteria choice problems that use in the solution the previously obtained modified method for analyzing hierarchies, based on the operation of additive convolution of local priorities not on the obtained set of characteristics of paired comparison matrices (as in the classical method), but on a set of pairs the relative weights of the coordinates of the eigenvectors being compared with each other for each criterion and the subsequent operation of additive convolution according to the criteria and alternatives in each pair. In this version, the algorithm ensures that previously achieved preferences are preserved when adding new alternatives and, thereby, makes it possible to optimize when processing large volumes of dynamically changing data, which significantly expands the applicability of the popular algorithm.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":"98 1","pages":"235-241"},"PeriodicalIF":1.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/IT.27.235-241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of the correct ranking of a dynamically replenished large set of alternatives in multicriteria choice problems that use in the solution the previously obtained modified method for analyzing hierarchies, based on the operation of additive convolution of local priorities not on the obtained set of characteristics of paired comparison matrices (as in the classical method), but on a set of pairs the relative weights of the coordinates of the eigenvectors being compared with each other for each criterion and the subsequent operation of additive convolution according to the criteria and alternatives in each pair. In this version, the algorithm ensures that previously achieved preferences are preserved when adding new alternatives and, thereby, makes it possible to optimize when processing large volumes of dynamically changing data, which significantly expands the applicability of the popular algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态填充大备选项集的多准则选择算法优化
我们考虑了多准则选择问题中动态补充的大备选集的正确排序问题,该问题在解中使用先前获得的改进的层次分析方法,该方法基于局部优先级的加性卷积操作,而不是基于获得的配对比较矩阵的特征集(如经典方法)。但是在一组对上,每个标准的特征向量坐标的相对权重相互比较,然后根据每个对中的标准和备选项进行加性卷积的后续操作。在这个版本中,该算法确保在添加新的选择时保留先前实现的偏好,从而使得在处理大量动态变化的数据时进行优化成为可能,这大大扩展了流行算法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1