Zhouli Wang, Leran Wang, Qiaoying Ming, T. Yue, Qian Ge, Yahong Yuan, Zhenpeng Gao, Rui Cai
{"title":"Reduction the contamination of patulin during the brewing of apple cider and its characteristics","authors":"Zhouli Wang, Leran Wang, Qiaoying Ming, T. Yue, Qian Ge, Yahong Yuan, Zhenpeng Gao, Rui Cai","doi":"10.1080/19440049.2022.2055155","DOIUrl":null,"url":null,"abstract":"Abstract Patulin is one of the most significant food safety problems in fruit and derived products. The reduction of patulin contamination in food processing has always been the focus of research. In this study, nine yeast strains were applied for the brewing of apple cider and the fate of patulin was determined. In this process, the patulin contamination can be decreased by adsorption onto and degradation of yeast cells in the main fermentation (20.8–49.1%), as well as the adsorption removal during clarification (18.7–58%), inverted cans (21.3–31.4%) and aging (1.0–5.8%). Saccharomyces cerevisiae (1027) was selected to reveal the elimination mechanism of patulin in main fermentation. The decrease of patulin content was mainly due to degradation and the intracellular enzymes played a more important role than extracellular ones. In addition, the synthesis of enzymes was related to the induction of patulin. Furthermore, the degradation product of patulin in the main fermentation was identified as E-ascladiol, which is less toxic than patulin. Based on the representative strain of S. cerevisiae 1027, patulin contamination can be effectively eliminated during apple cider brewing. This study provides a new insight into eliminating patulin contamination in the brewing of apple cider.","PeriodicalId":12121,"journal":{"name":"Food Additives & Contaminants: Part A","volume":"30 1","pages":"1149 - 1162"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives & Contaminants: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19440049.2022.2055155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Patulin is one of the most significant food safety problems in fruit and derived products. The reduction of patulin contamination in food processing has always been the focus of research. In this study, nine yeast strains were applied for the brewing of apple cider and the fate of patulin was determined. In this process, the patulin contamination can be decreased by adsorption onto and degradation of yeast cells in the main fermentation (20.8–49.1%), as well as the adsorption removal during clarification (18.7–58%), inverted cans (21.3–31.4%) and aging (1.0–5.8%). Saccharomyces cerevisiae (1027) was selected to reveal the elimination mechanism of patulin in main fermentation. The decrease of patulin content was mainly due to degradation and the intracellular enzymes played a more important role than extracellular ones. In addition, the synthesis of enzymes was related to the induction of patulin. Furthermore, the degradation product of patulin in the main fermentation was identified as E-ascladiol, which is less toxic than patulin. Based on the representative strain of S. cerevisiae 1027, patulin contamination can be effectively eliminated during apple cider brewing. This study provides a new insight into eliminating patulin contamination in the brewing of apple cider.