Leveraging Structural and Semantic Measures for JSON Document Clustering

Uma Priya D, P. S. Thilagam
{"title":"Leveraging Structural and Semantic Measures for JSON Document Clustering","authors":"Uma Priya D, P. S. Thilagam","doi":"10.3897/jucs.86563","DOIUrl":null,"url":null,"abstract":"In recent years, the increased use of smart devices and digital business opportunities has generated massive heterogeneous JSON data daily, making efficient data storage and management more difficult. Existing research uses different similarity metrics and clusters the documents to support the above tasks effectively. However, extant approaches have focused on either structural or semantic similarity of schemas. As JSON documents are application-specific, differently annotated JSON schemas are not only structurally heterogeneous but also differ by the context of the JSON attributes. Therefore, there is a need to consider the structural, semantic, and contextual properties of JSON schemas to perform meaningful clustering of JSON documents. This work proposes an approach to cluster heterogeneous JSON documents using the similarity fusion method. The similarity fusion matrix is constructed using structural, semantic, and contextual measures of JSON schemas. The experimental results demonstrate that the proposed approach outperforms the existing approaches significantly. ","PeriodicalId":14652,"journal":{"name":"J. Univers. Comput. Sci.","volume":"27 1","pages":"222-241"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Univers. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/jucs.86563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the increased use of smart devices and digital business opportunities has generated massive heterogeneous JSON data daily, making efficient data storage and management more difficult. Existing research uses different similarity metrics and clusters the documents to support the above tasks effectively. However, extant approaches have focused on either structural or semantic similarity of schemas. As JSON documents are application-specific, differently annotated JSON schemas are not only structurally heterogeneous but also differ by the context of the JSON attributes. Therefore, there is a need to consider the structural, semantic, and contextual properties of JSON schemas to perform meaningful clustering of JSON documents. This work proposes an approach to cluster heterogeneous JSON documents using the similarity fusion method. The similarity fusion matrix is constructed using structural, semantic, and contextual measures of JSON schemas. The experimental results demonstrate that the proposed approach outperforms the existing approaches significantly. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用JSON文档聚类的结构和语义度量
近年来,随着智能设备的使用和数字化商业机会的增加,每天都会产生大量异构JSON数据,使得高效的数据存储和管理变得更加困难。现有的研究使用不同的相似度度量并对文档进行聚类来有效地支持上述任务。然而,现有的方法主要关注模式的结构相似性或语义相似性。由于JSON文档是特定于应用程序的,不同注释的JSON模式不仅在结构上是异构的,而且还因JSON属性的上下文而有所不同。因此,需要考虑JSON模式的结构、语义和上下文属性,以便对JSON文档执行有意义的集群。本文提出了一种使用相似度融合方法对异构JSON文档进行聚类的方法。使用JSON模式的结构、语义和上下文度量来构建相似性融合矩阵。实验结果表明,该方法明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Code-Mixed Text: A Comprehensive Review Mobile Handoff with 6LoWPAN Neighbour Discovery Auxiliary Communication A Proposal of Naturalistic Software Development Method Recommendation of Machine Learning Techniques for Software Effort Estimation using Multi-Criteria Decision Making Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1